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Abstract

This paper introduces a Distributionally Robust Random Utility Model
(DRO-RUM), allowing the preference shock (unobserved heterogeneity)
distribution to be misspecified or unknown. Leveraging tools from the
literature on robust optimization, we contribute in several ways. First,
we show that the DRO-RUM inherently generates a shock distribution
that incorporates a correlation between the utilities of different alterna-
tives. Second, we establish that the distributionally robust social surplus
gradient yields the choice probability vector. This result extends the well-
known William-Daly-Zachary theorem to environments where the shock
distribution can be misspecified. Third, we establish a robust version of
the Fenchel equality. Fourth, we show how the DRO-RUM approach helps
study the demand inversion problem, the random coefficients RUM, and
the problem of limited consideration in discrete choice models. Finally, we
illustrate how our results apply under two different notions of statistical
distances: the ϕ-divergence and Sinkhorn distance approaches.
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1 Introduction

The Random Utility Model (RUM), introduced by Marschak (1959), Block

and Marschak (1959), and Becker et al. (1963), has become the standard ap-

proach for modeling stochastic choice problems. The seminal work of McFad-

den (1978a,c, 1981) contributes significantly to making RUM an empirically

tractable method applicable in various areas of applied microeconometrics, in-

cluding labor markets, industrial organization, health economics, transporta-

tion, and operations management. McFadden’s work, in particular, establishes

an economic foundation and econometric framework that connects observable

choices to stochastic choice behavior. This distinctive feature renders RUM

well-suited for addressing complex choice environments and conducting welfare

analysis (McFadden (2001) and Train (2009)).

In a RUM a decision maker (DM) faces a discrete choice set of alternatives

in which each option is associated with a random utility. Then the DM chooses

a particular option with a probability equal to the event that such alternative

yields the highest utility among all available alternatives. Most of the applied

literature models the random utility associated with each alternative as the

sum of an observable and deterministic component and a random preference

shock. Under this additive specification, different distributional assumptions on

the random preference shock will generate different RUMs. Thus, all the effort

is to provide conditions on the distribution of the preference shock such that

the choice probabilities are consistent with the random utility maximization

hypothesis (McFadden (1981)).

More importantly, assuming that the shock distribution is known to the

analyst, we can estimate the parameters describing the deterministic utility

associated with each alternative, carry out counterfactual welfare analysis, and

predict future choice behavior. From a modeling standpoint, this assumption

means that the analyst can correctly specify the shock distribution that describes

the unobserved heterogeneity in DM’s behavior.

In this paper, we develop a RUM framework that allows for the possibility

that the analyst (or the DM) does not know the true shock distribution. In doing

so, we propose a distributional robust framework that relaxes the assumption

that the shock distribution is known in advance. In particular, we develop a

RUM framework that allows for misspecification in the shock distribution. By

modeling the uncertainty regarding the true distribution, we follow the distribu-

tionally robust optimization literature and consider an environment where the

analyst has access to a reference distribution F . This distribution corresponds

to an approximation of the true statistical law generating the realizations of

preference shocks. We refer to F as the nominal distribution. Accordingly, we

model uncertainty distribution in terms of an uncertainty set, which consists of

all probability distributions that are close to F . We rely on the concept of sta-

tistical divergences to measure the distance between probability distributions.

More precisely, we use the notions of ϕ-divergences (Csiszar (1967); Liese and

Vajda (1987)) and Sinkhorn distances (Cuturi (2013), Wang et al. (2023)). Ex-
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amples of ϕ-divergences include the Kullback-Leibler, Renyi, and Cressie-Read

distances, among many others. In the case of the Sinkhorn distance, we use

the notion of cost function, where typical examples are the Mahalanobis and

Euclidean distances. Thus, the uncertainty set contains the nominal F and all

feasible distributions within a certain radius as measured by the ϕ-divergence

or the Sinkhorn distance.

Based on the uncertainty set, we introduce the robust social surplus func-

tion, corresponding to the maximum social surplus achievable over all feasible

distributions. Like the traditional RUM, the robust social surplus is a convex

function that contains all the relevant information to study and understand our

distributionally robust RUM (DRO-RUM).

1.1 Contributions

We make four contributions. First, we show that the analysis of the DRO-RUM

corresponds to the study of the properties of a strictly convex finite dimensional

stochastic optimization program. This characterization directly implies that

the endogenous robust distribution associated with the DRO-RUM introduces

correlation between the preference shocks, even when the nominal F may assume

independence.

Second, we show that the gradient of the robust social surplus function yields

the choice probability vector. The latter result is a nontrivial generalization of

the celebrated Williams-Daly-Zachary (WDZ) theorem to environments where

the true shock distribution is unknown. Furthermore, we show that the DRO-

RUM preserves the convex structure of the traditional RUM. In particular,

we derive a robust Fenchel duality framework that connects the robust social

surplus and its convex conjugate.

In our third contribution, we apply our framework to address three distinct

economic problems. Firstly, we characterize the empirical implications of the

DRO-RUM. More precisely, we demonstrate that for an observed choice proba-

bility vector, there exists a unique mean utility vector that can rationalize the

observed data within the context of a DRO-RUM. Notably, we establish that

this mean utility vector corresponds to the gradient of the convex conjugate of

the robust social surplus function. From a mathematical standpoint, we show

that the mean utility vector is derived as the unique solution of a strictly con-

vex stochastic programming problem. In our second application, we showcase

how our framework can effectively tackle the robust demand inversion problem

when random coefficients are present. Finally, we explore the adaptation of the

DRO-RUM to incorporate limited consideration. Specifically, we delve into how

our model can be integrated with the recently proposed limited consideration

RUM by Aguiar et al. (2023).

In our fourth contribution, we discuss the extension of the DRO-RUM be-

yond the realm of ϕ-divergences. Specifically, we introduce the Sinkhorn DRO-

RUM distance, a concept recently introduced in the distributionally robust opti-

mization literature by Wang et al. (2023). The Sinkhorn distance formalizes the



4

discrepancy between probability measures as the solution to a regularized opti-

mal transport problem. In this context, we demonstrate that Sinkhorn DRO-

RUM also preserves the convex analytic properties of the RUM. Notably, the

Sinkhorn DRO-RUM can be approached through a finite-dimensional optimiza-

tion program, adding to its tractability. Leveraging this feature, we establish

the WDZ theorem, the concept of Robust Fenchel equality, and address the

demand inversion problem in this more general setting.

We close the paper by conducting a series of numerical simulations to elu-

cidate the properties of our framework. Specifically, we compare the choice

behavior of the DRO-RUM with the multinomial logit (MNL) and multinomial

probit (MNP) models. Our primary focus centers on analyzing the influence

of the robustness parameter, which governs the size of the feasible set, thus

affecting both choice probabilities and the surplus function.

1.2 Related literature

Our paper is related to several strands of literature. First, our paper relates

to the literature on RUMs and convex analysis. The closest articles to ours

are the works by Chiong et al. (2016), Galichon and Salanié (2021), and Fos-

gerau et al. (2021). Similar to us, these papers exploit the convex structure of

the RUM to study the nonparametric identification of the mean utility vector

when aggregate market data is available (observed choice probabilities). Our

paper and results differ substantially from their work by allowing a more flexible

framework regarding distributional assumptions.

Second, our paper relates to the semiparametric choice model (SCM) liter-

ature. The work by Natarajan et al. (2009) introduces the SCM in an environ-

ment where the true joint distribution is unknown, but the analyst has access to

the set of marginal distributions associated with each alternative. This partic-

ular instance of the SCM is known as the marginal distribution model (MDM).

Mishra et al. (2014) studies the MDM approach’s theoretical and empirical

performance. Mishra et al. (2012) study a second instance of the SCM, which

exploits cross moments constraints. In particular, they assume that the true dis-

tribution is unknown but the analyst has access to the true variance-covariance

matrix that captures the correlation structure across the set of discrete alterna-

tives.

At first glance, our approach is similar to SCM. As discussed by Feng et al.

(2017), the latter are generally defined by a supremum over a set of distribu-

tions. We adapt to this definition by introducing the DRO-RUM, where the

true distribution is unknown, and the analyst, therefore, considers all distribu-

tions in an uncertainty set. Despite the similarity between the general SCM and

our approach, both frameworks have important differences. First, our approach

requires no assumption on the marginal distributions or variance-covariance

matrix. Instead, our model only requires knowledge of a nominal distribu-

tion. Second, using the concept of ϕ-divergence(or Sinkhorn distance) enables

the researcher to incorporate robustness, where she can control the uncertainty
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concerning the shock distribution by selecting the robustness parameter. Hence,

the feasible set is not determined explicitly by fixing some moments or marginal

distributions but is rather implicitly constructed by choosing the nominal distri-

bution and the magnitude of the robustness parameter. Moreover, our approach

can generate different models by allowing the choice of several ϕ-divergence func-

tions and different nominal distributions. Third, we show that the DRO-RUM

preserves the convex structure (and duality) of the traditional RUM approach.

In particular, we generalize the WDZ and provide a robust Fenchel duality anal-

ysis. Fourth, we apply our approach to study the demand inversion problem, the

random coefficient RUM, and the problem of limited consideration in discrete

choice models.

Our paper also connects to the literature on robustness in macroeconomics

(Hansen and Sargent (2001, 2008)). However, this literature predominantly

addresses recursive problems utilizing the Kullback-Leibler distance. A recent

contribution by Christensen and Connault (2023) introduces robustness tech-

niques to analyze the sensitivity of counterfactuals to parametric assumptions

about the distribution of latent variables in structural models. While related,

their focus differs from the problem addressed in our paper. Notably, they do

not explore the convex analytic properties of the DRO-RUM model. Addition-

ally, Christensen and Connault (2023) do not delve into the robustness problem

concerning the Sinkhorn distance.

Similarly, our work is also related to the decision theory literature on am-

biguity and model uncertainty. The seminal papers by Gilboa and Schmeidler

(1989) and Maccheroni et al. (2006) provide axiomatic foundations to represent

DM’s preferences in environments where she faces model ambiguity. Strzalecki

(2011) studies from an axiomatic standpoint the connection between multiplier

preferences and robustness.1 However, none of these papers study the problem

of model uncertainty in the context of RUMs.

Finally, our paper is closely related to the literature on distributionally ro-

bust optimization. Shapiro (2017) and Kuhn et al. (2019) provide an up-to-date

treatment of the subject. Applications vary from inventory management to reg-

ularization in machine learning.2However, to our knowledge, this literature has

not studied the problem of the distributional robustness of the RUM.

The rest of the paper is organized as follows. Section 2 reviews the traditional

RUM approach and introduces the problem of robustness. Section 3 presents the

DRO-RUM model and discusses its main properties. Section 4 discusses some

applications. Section 5 contents several numerical experiments comparing the

outcome of the DRO-RUM with respect to MNL and MNP. Section 6 discuss the

DRO-RUM in the context of Sinkhorn distances. Finally, section 7 concludes

the paper by providing an overview of possible extensions.

1For an excellent survey of the literature on ambiguity and model uncertainty, we refer

the reader to Hansen (2014) and Marinacci (2015).
2In Economics, one of the first papers studying robust optimization problems is Scarf

(1958)



6

Notation. Throughout the paper we use the following notation and definitions.

Let us denote R̄ = R∪ {−∞,+∞} and consider extended real-valued functions

f : V → R̄,

where V is a finite dimensional real vector space. Consequently, we denote by

V∗ its dual space consisting of all linear functionals. In particular, we often

work with subspaces of Rn. The set defined by

domf = {x ∈ V : f(x) < +∞}

is called the (effective) domain of f . A function is said to be proper if it takes

nowhere the value −∞ and domf ̸= ∅. For a proper function f : V → R̄ the set

∂f(x) represents its subdifferential at x ∈ domf , i.e.

∂f(x) = {g ∈ V∗ : f(y) ≥ f(x) + ⟨g, y − x⟩, for all y ∈ Rn} ,

where g ∈ V∗ is said to be a subgradient. If the subdifferential set is a singleton,

i. e. the subgradient g is unique, we denote by∇f(x) the gradient of the function

f at x ∈ int (domf). The convex conjugate of a proper function f : V → R̄ is

f∗(g) = sup
x∈V

{⟨x, g⟩ − f(x)} , g ∈ V∗.

EF (·) denotes the expectation operator with respect to a distribution F .

2 The Random Utility Model

Consider a decision maker (DM) making a utility-maximizing discrete choice

among alternatives j ∈ J = {0, 1, . . . , J}. The utility of option j is

ũj = uj + εj , (1)

where u = (u0, u1, . . . , uJ)
T is deterministic and ε = (ε0, ε1, . . . , εJ)

T is a vector

of random utility shocks. The alternative 0 has the interpretation of an outside

option. We assume that the set of potential deterministic utility vectors is given

by the set U ≜ {u ∈ RJ+1 : u0 = 0}. In other words, U is the set of mean utility

vectors with the normalization u0 = 0 for the outside option.

Following McFadden (1978a, 1981), the previous description corresponds to

the classic additive random utility model (RUM). Our presentation of the RUM

framework here will emphasize convex-analytic properties.

Assumption 1 The random vector ε follows a distribution F that is absolutely

continuous with finite means, independent of u, and fully supported on RJ+1.

Assumption 1 leaves the distribution of ε unspecified, thus allowing for a

wide range of choice probability systems far beyond the often-used logit model.

The assumption allows arbitrary correlation between the εj ’s may be important
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in applications. As a direct consequence of Assumption 1, the DM’s choice

probabilities correspond to:

pj(u) ≡ P
(
uj + εj = max

j′∈J
{uj′ + εj′}

)
, j = 0, 1, . . . , J.

A fundamental object in the RUM framework is the surplus function of

the discrete choice model (so named by McFadden (1981)). It is given by the

expected indirect utility defined as:

W (u) = EF

[
max
j∈J

{uj + εj}
]
. (2)

Under Assumption 1, W is convex and differentiable and the choice proba-

bility vector p(u) coincides with the gradient of W 3

∂

∂uk
W (u) = pk(u) for k = 0, 1, . . . , J

or, using vector notation, p (u) = ∇W (u). The previous result is the cele-

brated Williams-Daly-Zachary (henceforth, WDZ) theorem, famous in the dis-

crete choice literature (McFadden (1978a, 1981)).

2.1 Examples of RUM

One of the most widely used RUMs is the multinomial logit (MNL) model, which

assumes that the entries of (ε0, ε1, . . . , εJ)
T

follow i.i.d. Gumbel distributions

with scale parameter η. Given this assumption, we can write the social surplus

function in closed form:

W (u) = η log

 J∑
j=0

euj/η

+ ηγ, (3)

where γ is the Euler-Mascheroni constant. It follows from (3) that the WDZ

theorem implies that pj(u) is given by:

∂W (u)

∂uj
=

euj/η∑J
l=0 e

ul/η
for j ∈ J . (4)

The MNL model belongs to a broader class of RUMmodels called generalized

extreme value (GEV) models introduced by McFadden (1978b). This class of

models is defined via a generating function G : RJ+1
+ → R+, which has to satisfy

the following properties:

(G1) G is homogeneous of degree 1
η > 0.

(G2) G (x0, x1, . . . , xj , . . . , xJ) → ∞ as xj → ∞, j = 0, 1, . . . , J .

3The convexity of W follows from the convexity of the max function. Differentiability

follows from the absolute continuity of ε. See Shi et al. (2018), Chiong et al. (2016), and

Melo et al. (2019) for semiparametric econometric approaches based on these convex-analytic

properties of discrete-choice models.
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(G3) For the partial derivatives of G w.r.t. k distinct variables it holds:

∂k+1G (x0, . . . , xJ)

∂xj0 , ∂xj1 · · · ∂xjk

≥ 0 if k + 1 is odd,
∂k+1G (x0, . . . , xJ)

∂xj0 , ∂xj1 · · · ∂xjk

≤ 0 if k + 1 is even.

McFadden (1978b, 1981) show that a function G satisfying conditions (G1)-(G3)

implies that the joint distribution of the random vector ε corresponds to the

following probability density function:

fϵ (y0, y1, . . . , yJ) =
∂J+1 exp (−G (e−y0 , . . . , e−yJ ))

∂y0 · · · ∂yJ
,

An essential property of the GEV class is that the social surplus function cor-

responds to (McFadden, 1978b)

W (u) = η lnG (eu) + ηγ,

where γ is the Euler-Mascheroni constant. From the WDZ theorem it follows

that the choice probability of the j-th alternative corresponds to:

pj(u) =
∂W (u)

∂uj
= η

∂G (eu)

∂euj
· euj

G (eu)
∀j ∈ J .

It is easy to see that the generating function

G(eu) =

J∑
j=0

euj/η = 1 +

J∑
j=1

euj/η

leads to the MNL model.

The main advantage of the GEV class is its flexibility to capture complex

patterns correlation across the random variables εj ’s. Examples of this are the

Nested Logit (NL), the Paired Combinatorial Logit (PCL), the Ordered GEV

(OGEV), and the Generalized Nested Logit (GNL) model, which are particular

instances of the GEV family.

2.2 A robust framework for the RUM

A fundamental assumption in the RUM is that the shock distribution is known

to the researcher (and the DM). This means that the distribution of ε is correctly

specified. Our main goal in this paper is to relax this condition by allowing the

distribution of ε to be unknown. Instead, the distribution of ε is an argument in

an optimization problem that corresponds to the definition of the social surplus

function. We formalize this idea by replacing expression (2) with the robust

social surplus function:

WRO(u) = sup
G∈M(F )

EG

[
max
j∈J

{uj + εj}
]
, (5)

where M(F ) is a set of probability distributions that are close to a predeter-

mined distribution F which satisfies Assumption 1.
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The Definition (5) warrants some important remarks. Firstly, it is crucial

to recognize that expression (5) signifies a scenario in which the decision-maker

(or the analyst) faces uncertainty regarding the true distribution that generates

the vector ε. Consequently, (5) incorporates the selection of a distribution G as

an integral part of the concept of robust social surplus.

Secondly, it’s worth noting that, for a fixed distribution F , W (u) quan-

tifies the indirect expected utility. Therefore, Definition (5) characterizes an

environment in which the decision-maker makes choices based on the most fa-

vorable error distribution. In essence, Definition (5) represents an optimistic

DRO problem.

However, from an economic standpoint, the notion of DRO encodes the

idea of being robust to worst-case scenarios (Hansen and Sargent (2001, 2008),

Maccheroni et al. (2006), Gilboa and Schmeidler (1989)). In order to incorporate

this idea, we modify the expression (5) as follows:

WRO(u) = inf
G∈M(F )

EG

[
max
j∈J

{uj + εj}
]
, (6)

The expression (6) defines the robust social surplus by considering a distri-

bution G that minimizes the value of EG(maxj∈J {uj + εj}). In particular, the

expression (6) formalizes a situation where the DM (or the analyst) adopts a pes-

simistic attitude due to the lack of knowledge about the true shock distribution.

In other words, it represents a conservative approach that takes into account

the worst-case scenario regarding the distribution of shocks. Throughout the

paper, we will focus on both cases.

It is worth pointing ou that, from an economic standpoint, there is an im-

portant interpretation of the definitions (5) and (6). The robust-RUM considers

a situation where a DM faces preference shocks but has some flexibility concern-

ing the distribution generating those errors. According to this interpretation,

the set M determines how much flexibility the DM has while making a decision.

Similarly, the set M also influences how optimism and pessimism are captured

by (5) and (6). In later sections, we present some economic implications of this

point of view. More precisely, we will incorporate the robust surplus approach

into the costly attention allocation model by Aguiar et al. (2023) and analyze

the implications of the our approach.

In the uncertainty set M(F ), the distribution F can be seen as a best guess

of the joint distribution of error terms. In order to be robust against misspecifi-

cation the DM (or the analyst) takes into account all possible distributions that

are close to the nominal distribution F . In fact, a key aspect of our approach is

related to the structure of the set M(F ). In Section 3 we specify the M(F ) in

terms of ϕ-divergence functions, which enables us to use the notion of statistical

divergences between probability distributions (Csiszar (1967), Liese and Vajda

(1987), and Pardo (2005)). Hence, we will refer to this as the distributionally

robust-RUM (DRO-RUM). As we shall see, by doing this we are able to char-

acterize the resulting DRO-RUM surplus function in terms of a convex finite
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dimensional optimization program. This characterization is key in studying the

properties of the DRO-RUM approach.

Finally, we point out that the decisions of the robust surplus approach inherit

the randomness of RUM. Let G⋆ denote the distribution (or a limit of a sequence

of distributions) that attains the optimal value in (5) (or (6)). The choice

probability for alternative j under this model is given by (provided that it is

well defined):

pRO
j (u) = PG⋆

(
j = argmax

j′∈J
{uj′ + εj′}

)
(7)

2.3 Connection with the semiparametric choice model ap-

proach

It is worth pointing out that the definition of the RO-RUM is similar to the

semiparametric choice model (SCM), which has been recently introduced in the

operation research literature (Natarajan et al. (2009)). Formally, in the SCM

the surplus function is defined as the supremum over distributions. In particular,

the definition (5) is a particular instance of the SCM.

By doing so, the SCM can capture complex substitution patterns and corre-

lation between the different alternatives in the choice set J . Feng et al. (2017)

provide a detailed overview of several discrete choice models, where the authors

refer to SCM as a supremum over a general set of distributions. Thus, the

robust-RUM could be seen as an instance of a semi-parametric choice model.

There are some existing instances of SCM in the literature. In their original

paper, Natarajan et al. (2009) restrict the feasible set to joint distributions with

given information on the marginal distributions. This particular instance of the

SCM is known as the marginal distribution model (MDM).4 A second class of

SCMs exploits cross-moment constraints. In particular, Mishra et al. (2012)

study the cross-moment model (CMM), which considers the set M to be the

set of distributions consistent with a known variance-covariance matrix.5

Despite the apparent similarity, our approach differs from the existing SCM

in several key aspects. First, as we will demonstrate, our framework diverges

from SCM in how we specify the set of distributions. In traditional SCMs, ana-

lysts are typically required to explicitly construct a feasible set, often by fixing

the marginal distributions or the variance-covariance matrix. In contrast, in

our robust approach, the analyst defines the feasible set implicitly by specify-

ing the nominal distribution F and then upper bounding the distance of other

distributions from F . As a result, the DRO-RUM approach does not require

knowledge of the marginals or variance-covariance matrix. In Section 3, we will

4In MDM, the marginal distributions of the random vector ε are fixed. Formally, we write

εi ∼ Fi, where Fi is the marginal distribution function of the i-th error, i = 1, . . . , J . In this

case, we define M ≜ Mar = {F : εi ∼ Fi ∀i ∈ J}.
5Formally, the CMM considers the set of distributions M(0,Σ) = {G : EF (ε) =

0, EG(εε⊤) = Σ}. In the definition of M(0,Σ), the variance-covariance matrix Σ is as-

sumed to be known.
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explore how in the DRO-RUM, the researcher has control over the distance pa-

rameter by selecting a robustness parameter’s magnitude. Thus, our approach

fundamentally operates on a different principle compared to existing SCMs.

Secondly, we delve into the analysis of both the optimistic and pessimistic

versions of the robust social surplus. In contrast, the SCM approach exclusively

considers the optimistic case. This mathematical distinction holds economic

significance, as modeling robustness from a solely optimistic perspective may

prove inadequate in certain decision-making scenarios. For example, in Section

4.3, we demonstrate that within the framework of a Random Utility Model

(RUM) with limited consideration, an optimistic RUM (a specific instance of

the SCM) implies that a decision-maker will prefer choice sets with greater

uncertainty. In this specific case, we uncover an intriguing observation: the

robust surplus shows a positive correlation with the variance of preference shocks

among different alternatives within a particular choice set. In essence, in this

case, we can characterize the decision-maker as a risk-loving agent. However,

this seemingly counterintuitive behavior can be mitigated when we consider

the pessimistic version of the social surplus function. Therefore, the DRO-

RUM framework offers the flexibility to capture a range of behavioral patterns

associated with non-standard decision-making scenarios.

Additionally, we show that the DRO-RUM corresponds to the solutions of

finite dimensional optimization problem. This latter fact allows us to extend

the WDZ theorem to environments where the shock distribution is misspecified.

Finally, Section 4 shows how the DRO-RUM enables us to recover the mean

utility vector u.

3 A Distributionally Robust - RUM model

In this section, we formally introduce the DRO-RUM approach. Following

the distributionally robust optimization literature, we consider an environment

where the researcher (or the DM) has access to a reference distribution F , which

may be an approximation (or estimate) of the true statistical law governing the

realizations of ε. We refer to F as the nominal distribution. Then, we define

a set of probability distributions that are close to F . We rely on statistical

distances to formalize the notion of distance between probability distributions.

3.1 ϕ-divergences

We measure the distance between two probability distributions by the so-called

ϕ-divergence.

Let ϕ : R → (−∞,+∞] be a proper closed convex function such that dom ϕ is

an interval with endpoints α < β, so, int (dom ϕ) = (α, β). Since ϕ is closed, we

have limt→α+ ϕ(t) = ϕ(α), if α is finite and limt→β− ϕ(t) = ϕ(β), if β is finite.

Throughout the paper we assume that ϕ is nonnegative and attains its min-

imum at the point 1 ∈ int (dom ϕ), i.e. ϕ(1) = 0. The class of such functions is

denoted by Φ.
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Definition 1 Given ϕ ∈ Φ, the ϕ-divergence of the probability measure G with

respect to F is

Dϕ(G∥F ) =

{ ∫
RJ+1 ϕ

(
g(ε)
f(ε)

)
f(ε)dε if G ≪ F

+∞ otherwise
(8)

where f and g are the associated densities of F and G respectively.

To avoid pathological cases, throughout the paper, we assume the following:

ϕ(0) < ∞, 0 · ϕ
(
0

0

)
≡ 0, 0 · ϕ

(s
0

)
= lim

ε→0
ε · ϕ

(s
ε

)
= s lim

t→∞

ϕ(t)

t
, s > 0. (9)

If the measure G is absolutely continuous w.r.t. F , i. e. G ≪ F , the ϕ-

divergence can be conveniently written as:

Dϕ(G∥F ) = EF (ϕ(L(ε))) , (10)

where L(ε) ≜ g(ε)/f(ε) is the likelihood ratio between the densities g and f , also

known as Radon-Nikodym derivative of the two measures. Using the expression

(10) combined with the convexity of ϕ, Jensen’s inequality implies that

Dϕ(G∥F ) ≥ ϕ (EF (L(ε))) = ϕ(1) = 0 (11)

with equality if G = F , so that Dϕ(G∥F ) is a measure of distance of G from

F .6 Furthermore, the ϕ-divergence functional is convex in both of its arguments.

The following proposition summarizes these key properties.

Proposition 1 The ϕ-divergence functional (8) is well-defined and nonnega-

tive. It is equal to zero if and only if f(t) = g(t) a.e. Furthermore, Dϕ is

convex on each of its arguments.

In our analysis, a key element will be the convex conjugate of ϕ. For ϕ ∈ Φ

its conjugate denoted by ϕ∗ is:

ϕ∗(s) = sup
t∈R

{st− ϕ(t)} = sup
t∈domϕ

{st− ϕ(t)} = sup
t∈int domϕ

{st− ϕ(t)}, (12)

where the last equality follows from Corollary 12.2.2 in Rockafellar (1970). The

conjugate ϕ∗ is a closed proper convex function, with int dom ϕ∗ = (a, b), where

a = lim
t→−∞

t−1ϕ(t) ∈ [−∞,+∞); b = lim
t→+∞

t−1ϕ(t) ∈ (−∞,+∞].

Moreover, since ϕ is convex and closed, we have for its bi-conjugate ϕ∗∗ =

ϕ, (Rockafellar (1970)). It is worth noting that using the fact that 1 is the

minimizer of ϕ and it is in the interior of its domain, so ϕ′(1) = 0 holds. In

addition, using the property that ϕ is convex and closed, we have by Fenchel

equality y = ϕ′(x) iff x = ϕ∗′
(y). Applying this latter observation to x = 1 and

y = 0 we obtain ϕ∗′(0) = 1.

6We recall that 1 ∈ int dom ϕ is the point where ϕ attains its minimum 0.
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3.2 The DRO-RUM framework

The main idea is to consider an environment where the analyst (or a DM)

does not know the true distribution governing realizations of the shock vector

ε. In this environment, the role of F is an approximation or some best guess

of the “true” unknown distribution. Recognizing this ambiguity or potential

misspecification of the distribution F , we make use of the ϕ-divergence to define

the uncertainty set Mϕ(F ) as:

Mϕ(F ) = {G ≪ F : Dϕ(G||F ) ≤ ρ}, (13)

Formally, Mϕ(F ) is the set of all probability measures G that are absolutely

continuous w.r.t F , whose distance from F , as measured by the ϕ-divergence,

is at most ρ. The hyperparameter ρ is the radius of Mϕ(F ), which reflects how

uncertain is the researcher (or the DM) about the plausibility of F being correct.

Let us further elaborate on this interpretation. Following Hansen and Sargent

(2001, 2008), ?, and ?, we interpret the set (13) as an environment in which the

analyst (or the DM) has some best guess F of the true unknown probability

distribution, but does not fully trust it. For instance, the researcher may con-

sider that the nominal distribution F corresponds to the Gumbel distribution.

In this case, Mϕ(F ) accounts for many other probability distributions G to be

feasible, where ρ determines the size of the feasible set.

Endowed with the set Mϕ(F ), we can modify expressions (5) and (6) to

obtain a distributionally robust surplus function. Thus, the surplus function of

the DRO-RUM corresponds to the following optimization problems:

W (u) = sup
G∈Mϕ(F )

{
EG

[
max
j∈J

{uj + εj}
]}

(14)

and

W (u) = inf
G∈Mϕ(F )

{
EG

[
max
j∈J

{uj + εj}
]}

(15)

Some remarks are in order. First, a fundamental aspect of programs (14) (15)

is the role of the parameter ρ which controls the size of Mϕ(F ). Because

of this, we can interpret ρ as an index of robustness. More precisely, when

ρ = 0 we get Mϕ(F ) = {F}, which means that we recover the RUM under the

distribution F .7 On the other hand, when ρ −→ ∞ the uncertainty set Mϕ(F )

admits a much larger set of possible distributions, including those that may not

satisfy Assumption 1.8 The DRO-RUM aims to set ρ to reflect the perceived

7We note that ρ = 0 implies that Dϕ(G∥F ) = 0. Then by Proposition 1, we know that

this latter equality holds if and only if F = G.
8To see this, we note that when ρ −→ ∞ the ϕ-divergence is unbounded. This latter

fact implies that the set Mϕ(F ) consists of all distributions which are absolute continuous

w.r.t. to F . As F is fully supported, this only implies that the distributions in Mϕ(F ) must

be continuous but certainly not fully supported on RJ+1. In fact, Mϕ(F ) may consist of

distributions that are absolutely continuous w.r.t Lebesgue measure but without finite means.

For instance, the Pareto distribution with shape parameter α = 1 is absolutely continuous

but fails to have a finite mean.
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uncertainty that the researcher (or a DM) experiences about the distributional

assumption for ε.

The following lemma establishes some elementary properties of W (u).9

Lemma 1 For the DRO-RUM the surplus function W (u) satisfies:

(i) W (u+ c · e) = W (u) + c for all c ∈ R, u ∈ RJ+1.

(ii) W (u) ≥ W (v) for all u, v ∈ RJ+1 with u ≥ v.

(iii) W (u) ≥ max
j∈J

uj +min
j∈J

EF [εj ].

Similarly, W (u) satisfies properties (i), (ii), and the property:

(iv) W (u) ≤ max
j∈J

uj +min
j∈J

EF [εj ].

The following result characterizes W (u) and W (u).

Proposition 2 Let Assumption 1 hold and define the random variable H(u, ε) ≜
maxj∈J {uj + εj}. Then the following statements hold:

(i) The problem (14) is equivalent to solving the following finite-dimensional

convex program:

W (u) = inf
λ≥0,µ∈R

{
λρ+ µ+ λEF

[
ϕ∗
(
H(u, ε)− µ

λ

)]}
, (16)

where λ is the Lagrange multiplier associated to the uncertainty set Mϕ(F )

and µ the multiplier associated to G being a probability measure. Further-

more, the program (16) is convex in µ and λ.

(ii) The problem (15) is equivalent to solving the following finite-dimensional

convex program:

W (u) = sup
λ≥0,µ∈R

{
−λρ− µ− λEF

[
ϕ∗
(
−H(u, ε)− µ

λ

)]}
, (17)

where λ is the Lagrange multiplier associated to the uncertainty set Mϕ(F )

and µ the multiplier associated to G being a probability measure. Further-

more, the program (17) is concave in µ and λ.

Some remarks are in order. First, it is worth pointing out that the result in

Proposition 2 follows from standard arguments in the literature on distribution-

ally robust optimization problems (e.g. Ben-Tal et al. (2013); Bayraksan and

Love (2015); ?). However, the contribution of Proposition 2 is connect the RUM

with the literature on DRO problems. Second, the result in Proposition 2 char-

acterizes the functions W (u) and W (u) as the solution of a finite-dimensional

9We must mention that the result in Lemma 1 resembles the properties of the welfare-

choice based models in Feng et al. (2017). In fact, they show that the the social surplus

function associated with a RUM corresponds to a welfare-choice function. We use the result

in Lemma 1 to understand properties of the associated robust optimization with W (u).
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stochastic convex optimization problem. The efficiency in solving programs (16)

and (17) strongly depends on expectation w.r.t. the nominal distribution F and

the properties of the convex conjugate ϕ∗ (see, for instance, Ruszczyński and

Shapiro (2021)).

The next corollary is a straightforward consequence of Proposition 2 formal-

izes the connection between W (u) and WDRO(u) when ρ = 0.

Corollary 1 Let Assumption 1 hold. Then for ρ = 0 we get W (u) = W (u) =

W (u).

3.3 A robust WDZ theorem

A fundamental aspect of RUMs is the possibility of characterizing choice prob-

abilities under specific distributional assumptions on ε. Formally, and as a

consequence of Assumption 1, the WDZ theorem establishes that the gradient

of W (u) yields the choice probability vector p(u). In this section, we show

that in the DRO-RUM, a similar result holds. In particular, we show that

∇W (u) = p⋆(u) where p⋆(u) corresponds to the choice probability vector gen-

erated by the optimal solution to (16) approach. Similarly, for the pessimistic

case, we show that ∇W (u) = p⋆(u) where p⋆(u) is the choice probability vector

associated with (17).

To establish this result, we need the following assumption.

Assumption 2 ϕ∗(s) is strictly convex and differentiable with ϕ∗′(s) ≥ 0 for

all s.

We point out that many ϕ-divergence functions satisfy Assumption 2. Table 1

overviews three popular ϕ-divergences satisfying this assumption.

Divergence ϕ(t) ϕ∗(s) Domain ϕ∗′
ϕ∗′′

Kullback-Leibler t log t es−1 R es−1 es−1

Reverse Kullback-Leibler − log(t) −1− log(−s) R−− − 1
s

1
s2

Hellinger Distance (
√
t− 1)2 s

1−s s < 1 1
(1−s)2

− 2
(s−1)3

Table 1: ϕ-divergences with their convex conjugates and first and second deriva-

tives.

As a direct implication of the Assumption 2 we can establish the strict

convexity and uniqueness of an optimal solution to (16).

Lemma 2 Let Assumptions 1 and 2 hold. Then program (16) (respectively

(17)) is strictly convex (concave) and has a unique optimal solution λ
⋆
and µ⋆.

A second important implication of Assumption 2 is the possibility of char-

acterizing the robust density associated to the optimal solution of the program

(16).
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Lemma 3 Let Assumptions 1 and 2 hold. For a fixed u ∈ U , let λ⋆
> 0 and

µ⋆ ∈ R be the unique solution to problem (16). Then the unique robust density

g⋆(ε) corresponds to:

g⋆(ε) = ϕ∗′
(
H(u, ε)− µ⋆

λ
⋆

)
f(ε) ∀ε ∈ RJ+1. (18)

Similarly, let λ⋆ > 0 and µ⋆ ∈ R be the unique solution to problem (17). Then

the unique robust (pessimistic) density g⋆(ε) corresponds to:

g⋆(ε) = ϕ∗′
(−H(u, ε)− µ⋆

λ⋆

)
f(ε) ∀ε ∈ RJ+1. (19)

Proof. Define Ψ(λ, µ) := λρ + µ + λEF

(
ϕ∗
(

H(u,ε)−µ
λ

))
. Optimizing Ψ(λ, µ)

w.r.t λ and µ, the first order conditions combined with Assumption 2 yield that

the optimal solution λ
⋆
and µ⋆ must satisfy

EF

(
ϕ∗′
(
H(u, ε)− µ⋆

λ
⋆

))
= 1∫

RJ+1

ϕ∗′
(
H(u, ε)− µ⋆

λ
⋆

)
f(ε)dε = 1

Define g⋆(ε) ≜ ϕ∗′
(

H(u,ε)−µ⋆

λ
⋆

)
f(ε). It follows that

∫
RJ+1 g

⋆(ε)dε = 1. Further-

more, by Assumption 2, it follows that g⋆(ε) ≥ 0 for all ε ∈ RJ+1. Hence, we

conclude that g⋆(ε) is indeed a probability density, and we call it the robust

density associated with the problem (16). A similar argument shows (19). □
Some remarks are in order. First, the robust density g⋆ (respectively g⋆)

depends on the choice of the ϕ-divergence through its conjugate ϕ∗. Moreover,

the robust density depends on the deterministic utility vector via H(u, ε), even

though the nominal distribution F does not depend on u due to Assumption 1.

In addition, g⋆ allows us to define the robust distribution function G
⋆
(respec-

tively G⋆), which, as we shall see, plays a key role in providing an explicit form

for W (u) (respectively W (u)). Second, Lemma 3 establishes that the robust

density g⋆(ε) incorporates correlation in the elements of the random vector ε

through the factor ϕ∗′((H(u, ε)− µ⋆)/λ
⋆
). Thus, even though the nominal dis-

tribution F may assume that ε0, ε1, . . . , εJ are independent, the DRO-RUM

approach introduces correlation of these terms.

Example 1 [KL-Divergence] We now consider the case of the Kullback-Leibler

divergence. In doing so, we define ϕ as follows:

ϕ(t) ≜ t log t, t ≥ 0 (20)

We note that in the previous expression, 0 log 0 = 0. Here∫
RJ

ϕ(L(ε))dF (ε) (21)



17

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

x

in
te

gr
an

d(
x)

Robust Density
Gumbel Density

(a) ρ = 0.01
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(c) ρ = 3.5

Figure 1: Three instances of ρ

defines the Kullback-Leibler divergence, denoted DKL(G∥F ). For λ > 0 the

conjugate of λϕ is (λϕ)∗(y) = λ
(
ey/λ − 1

)
. From Proposition 2 we know that

W (u) = inf
λ≥0,µ

{
λρ+ µ+ λe−µ/λEF

[
eH(u,ε)/λ

]
− λ

}
(22)

In (22) minimizing with respect to µ yields µ⋆ = λ lnEF

[
eH(u,ε)/λ

]
. Plugging

µ⋆ in (22) we obtain λ⋆ as the solution to

W (u) = inf
λ>0

{
λρ+ λ lnEF

[
eH(u,ε)/λ

]}
. (23)

It is well-known that in the case of the KL divergence (e.g., Hu and Hong

(2012) and Hansen and Sargent (2001)), the “robust” density is given by:

g⋆(ε) = f(ε)
eH(u,ε)/λ⋆

EF (eH(u,ε)/λ⋆)
(24)

where f(ε) is the density associated to a nominal distribution, H(u, ε) = maxj∈J {uj+

εj} and λ
⋆
is the unique optimal solution to (23). To see how the optimal den-

sity (24) compares to the case where the nominal is a Gumbel distribution, in

Figure 1.

The result in Lemma 3 enables us to characterize the choice probability vec-

tor p⋆(u) similarly to the celebrated WDZ theorem. For the sake of exposition,

we establish the result only in terms of W (u).
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Theorem 1 Let Assumptions 1 and 2 hold. Let (λ
⋆
, µ⋆) and (λ⋆, µ⋆) be the

unique optimal solutions to programs (16) and (17), which induce g⋆, G
⋆
, g⋆,

and G⋆. Then the following statements hold:

(i) The robust social surplus functions are given by:

W (u) = EG
⋆

(
max
j∈J

{uj + εj}
)

and W (u) = EG⋆

(
max
j∈J

{uj + εj}
)

(ii) The choice probability vectors p⋆(u) and p⋆(u) are given by:

∇W (u) = p⋆(u) and ∇W (u) = p⋆(u).

Part (i) of the theorem establishes that given the optimal solutions λ
⋆
and

µ⋆, W (u) takes the familiar expected maximum form that characterizes the

RUM (see Eq.(2)). The main difference between the characterization in part

(i) and the surplus functions from RUM is that expression (1) corresponds to

the expectation with respect to the distribution G
⋆
. Part (ii) shows that the

gradient of W (u) yields the choice probability vector p⋆(u).

It is worth pointing out that the result in Theorem 1 also holds for the

case of the program (17), where we replace W (u) and p⋆ by W (u) and p⋆

respectively. Thus, Theorem 1 generalizes the WDZ to environments where

the nominal distribution F may be misspecified or incorrect. In other words,

Theorem 1 shows that the DRO-RUM preserves the expected maximum form

and the gradient structure of the popular RUM.

3.4 A Robust Fenchel equality

In this section we derive a distributionally robust version of the Fenchel equality

for discrete choice models. In order to establish this result, we recall that U is

the set of mean utility vectors with the normalization u0 = 0 for the outside

option.

Our first step is to understand the properties of the convex conjugate of

W (u):

W
∗
(p) = sup

u∈U

{
⟨u, p⟩ −W (u)

}
. (25)

In particular, we are interested in understanding the behavior of W
∗
(p) on

its effective domain of:

domW
∗
=
{
p ∈ RJ+1 |W ∗

(p) < ∞
}
.

Similarly, we are interested in the case of the concave conjugate of W (u),

which is defined as

W ∗(p) = inf
u∈U

{⟨u, p⟩ −W (u)} . (26)

We are interested in understanding the behavior of W ∗(p) on its effective

domain of:

domW ∗ =
{
p ∈ RJ+1 |W ∗(p) < ∞

}
.

The following lemma plays a key role in our analysis.
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Lemma 4 Let Assumptions 1 and 2 hold. Then W (u) is strictly convex in u.

Similarly, W (u) is strictly concave in u.

The following theorem establishes the continuity and smoothness of W
∗
.

Theorem 2 Let Assumptions 1 and 2 hold. The convex conjugate W
∗
is contin-

uous on its domain domW
∗
which coincides with the probability simplex ∆J+1.

Furthermore, W
∗
is continuously differentiable on int domW

∗
.

Now we are ready to establish a robust version of the Fenchel equality

Theorem 3 Let Assumptions 1 and 2 hold. Then

(i) For W (u)and p ∈ ∆J+1, u ∈ U the following holds:

p = ∇W (u) ⇔ u = ∇W
∗
(p). (27)

(ii) For W (u)and p ∈ ∆J+1, u ∈ U the following holds:

p = ∇W (u) ⇔ u = ∇W ∗(p). (28)

Some remarks are in order. Firstly, parts (i) and (ii) extend Fenchel duality

in RUMs to environments where the shock distribution can be misspecified. To

illustrate this, it is worth noting that when ρ = 0, Theorem 3 reduces to the

traditional Fenchel equality in discrete choice models (e.g., Chiong et al. (2016)).

Secondly, a crucial aspect of the result presented in Theorem 6 is the fixed

nature of the deterministic mean utility vector u. Specifically, parts (i) and

(ii) establish that p and p must exhibit consistency with u. This implies that

Theorem 3 offers a method to determine p and p for a given vector u As we will

discover, this fact plays a pivotal role in our analysis of demand inversion.

4 Applications

In this section, we delve into three distinct economic applications of the DRO-

RUM approach. First, we explore how our approach can effectively address

the demand inversion problem, as originally proposed by Berry (1994). In our

second application, we investigate a robust inversion problem involving random

coefficients. Finally, in our last application, we examine the concept of limited

consideration within the context of the DRO-RUM framework.

4.1 Robust demand inversion

In this section, we discuss the empirical content of the DRO-RUM. In particular,

we show how our approach is suitable to recover the mean utility vector allowing

for uncertainty about the true distribution generating ε.

To gain some intuition, consider a situation where the choice probability

vector p̂ is observed from market data. Then the analyst’s goal is to find a
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vector u that rationalizes the observed p̂. Following Berry (1994), this problem

is known as the demand inversion. In particular, Berry (1994) shows that in

the case of the MNL u satisfy the following

p̂j =
euj

1 +
∑J

j′=1 e
uj′

for j = 1, . . . , J.

and

p̂0 =
1

1 +
∑J

j′=1 e
uj′

Then using the previous expressions, we can solve for the mean utility vector

u as a function of p:

log(p̂j/p̂0) = uj for j = 1, . . . , J.

In other words, we can express u in terms of the observed p̂.

We can use a similar argument to find the vector u in the case of the nested

logit, the random coefficient MNL model (Berry (1994); Berry et al. (1995)),

and in the case of the inverse product differentiation logit model of Fosgerau

et al. (2022). For general RUMs beyond the MNL and its variants, Galichon

and Salanié (2021) develops a general approach based on convex duality and

mass transportation techniques. They show that for any fixed distribution of ε

the mean utility vector u is identified from the observed choice probability p.

This section aims to show that the DRO-RUM can be used to study the

demand inversion problem in environments where the analyst does not know

the true distribution of ε. Thus, our approach allows us to identify u under

misspecification of the distribution governing the realizations of ε. In doing so,

we use Theorem 1 which implies that:

p̂j =
∂W (u)

∂uj
∀j ∈ J .

Furthermore, from Theorem 6 we get:

uj =
∂W

∗
(p̂)

∂pj
and uj =

∂W
∗
(p̂)

∂pj
∀j ∈ J ,

where u achieves the maximum in (25) and u obtains the minimum in (26).

Then, given the robust distributions G
⋆
and G⋆, we conclude that u and u are

identified from the observed p̂. In other words, we can find the vectors u and u

that rationalize the observed choice probability vector p̂.

The following result establishes the empirical content of the DRO-RUM.

Proposition 3 Let Assumptions 1 and 2 hold. Let p̂ be an observed (market

data) choice probability vector. Then

(i) (u⋆, λ
⋆
, µ⋆) is the unique solution to the strictly convex optimization prob-

lem:

−W
∗
(p̂) = inf

u∈U,λ∈R+,µ∈R

{
λρ+ µ+ λEF

(
ϕ∗
(
H(u, ε)− µ

λ

))
− ⟨p̂, u⟩

}
.

(29)
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(ii) (u⋆, λ⋆, µ⋆) is the unique solution to the strictly concave optimization prob-

lem:

−W ∗(p̂) = sup
u∈U,λ∈R+,µ∈R

{
−λρ− µ− λEF

(
ϕ∗
(
−H(u, ε)− µ

λ

))
− ⟨p̂, u⟩

}
.

(30)

where W ⋆(p̂) is the concave conjugate of W (u).

As we discussed in the introduction of this section, for a fixed distribution of ε,

parts (i) and (ii) have been established in the Galichon and Salanié (2021). Our

result differs from theirs in a fundamental aspect; we achieve the identification of

the mean utility vectors u and u, relaxing the assumption that the distribution

of ε is known. In other words, our result shows how the robust Fenchel equality

yields the nonparametric identification of u and u under (potential) misspecifi-

cation of the shock distribution. Similarly, our result relates to dynamic discrete

choice models’ “inversion” approach(e.g. Chiong et al. (2016)) For instance the

papers by Hotz and Miller (1993) and Arcidiacono and Miller (2011) establish

that the mean utility vector u can be recovered as ∇−1W (p̂) = u. Their ap-

proach only applies to the case of the MNL and GEV models. By exploiting

convex optimization techniques, Fosgerau et al. (2021) extends Hotz and Miller

(1993) and Arcidiacono and Miller (2011)’s inversion approach to models far

beyond the GEV class. Similarly, Li (2018) considers a convex minimization

algorithm to solve the demand inversion problem. He illustrates his method in

the case of both the Berry et al. (1995) random coefficient logit demand model

and the Berry and Pakes (2007) pure characteristics model. However, Fosgerau

et al. (2021) and Li (2018)’s results only apply under the assumption that the

distribution of ε is known. In contrast, Proposition 3 establishes that given a

choice probability vector p̂, we can identify u and u as the unique solutions of

the optimization programs (29) and (30) respectively. This latter characteri-

zation captures the role of misspecification through the value of the Lagrange

multipliers (λ
⋆
, µ⋆) and (λ⋆, µ⋆). Thus, Proposition 3 provides a distributionally

robust nonparametric identification result.

4.2 A robust random coefficient model

In this section we show how our Theorem 3 can be applied to study a robust

inversion problem with random coefficients. Formally, we analyze the random

coefficient model assuming that the ϕ-divergence corresponds to the Kullback-

Leibler distance. Following Berry et al. (1995) and Galichon and Salanié (2021),

we consider a random coefficient model with ε = Ze+ Tη, where e is a random

vector on Rk with distribution Fe , Z is a |J | × k matrix, T > 0 is a scalar

parameter, and η is a vector of |J | Gumbel random variables, whose distribution

function is Fη. Assume that e and η are statistically independent. Fixing the

distributions Fe and Fη, we can use the iterated expectation, combined with

the independence of e and η (Eqs. B.6-B.7 in Galichon and Salanié (2021)) we

get that
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W (u) = EFe

(
Eη

(
max
j∈J

{uj + (Ze)j + Tηj}
)
|e
)
,

= EFe (W (u+ Ze)) ,

where W (u+Ze) =
∫
RJ+1 maxj∈J {uj + (Ze)j + Tηj}fηdη. Using the fact that

η follows a Gumbel distribution, we find that

W (u+ Ze) = T log

∑
j∈J

e
uj+(Ze)j

T

 .

Let us assume that Fe approximates the true distribution generating e. Then

we can define W (u) as follows:

W (u) = sup
Ge∈Mϕ(Fe)

EGe

T log

∑
j∈J

e
uj+(Ze)j

T


To apply Theorem 3, we note that H(u, ε) = T log

(∑
j∈J e

uj+(Ze)j
T

)
. Then,

using the Kullback-Leibler distance, we have that for an observable choice prob-

ability vector p, the identified mean utility vector u⋆ corresponds to the solution

of the following program:

−W
∗
(p̂) = inf

u∈U,λ>0

{
ρλ+ λ lnEFe

∥eu+Ze∥T−1 − ⟨p̂, u⟩
}
, (31)

where ∥eu+Ze∥T−1 ≜
(∑

j∈J e
uj+(Ze)j

T

)T
.

The program (31) allows us to identify the mean utility vector enabling some

degree of misspecification in the distribution of e. It is worth remarking that

program (31) is fairly tractable, so we can use traditional stochastic program-

ming algorithms to find its unique solution. For the case of W (u) a similar

argument can be applied.

4.3 The DRO-RUM and limited consideration

In this section we discuss how to incorporate limited consideration in the DRO-

RUM. In particular, we adapt Aguiar et al. (2023)’s costly attention allocation

model. Hence, we consider a situation where the DM faces a menu A and

needs to allocate her attention, measured by πA ∈ ∆(2A), over all possible

consideration sets (including the empty set). Aguiar et al. (2023) propose to

measure the attractiveness of a set D by α(D) ≜ EFD
(maxj∈D{uj + εj}) where

FD is the distribution associated with εD = (εj)j∈D for all D ∈ 2A. For the

case of the empty set ∅ we can use the normalization α(∅) = 0. The DM faces a

cognitive cost associated with selecting a consideration set. This cost is captured

by a function C : [0, 1] −→ R∪{∞}, which is assumed to be menu independent

but depends on the allocated attention π(D) as measured by C(π(D)). In
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addition, following the literature on perturbed utility models (Fudenberg et al.

(2015)), C is assumed to be convex.

Accordingly, the DM solves the following problem

max
π∈∆(2A)

∑
D⊆A

[π(D)α(D)− C(π(D))]

 (32)

In the previous expression, a key assumption is the fact that DM knows the

distribution FD associated with each set D. Following Aguiar et al. (2023), we

assume that K(t) = −(t log t)/θ, where θ is the cost parameter. Accordingly,

the unique solution to problem (32) is given by:

π(D) =
exp(θα(D))∑

C⊆A exp(θα(C))
∀D ⊆ A (33)

Some remarks are in order. First, the allocation rule (33) tends to assign higher

probability to sets with more alternatives. To see this, consider D′ ⊂ D. In this

case, it is easy to see that α(D′) < α(D) and π(D′) < π(D). Thus, everything

else equals, rule (33) assigns larger probabilities to larger consideration sets.

The second remark about the solution (33) is the fact that it is derived under

the assumption that the DM knows the distribution FD for all D ∈ 2A. How-

ever, we can use the DRO-RUM to build a robust, costly attention allocation

framework. To see this, we replace α(D) by its distributionally robust counter-

part α(D) ≜ supGA∈Mϕ(FD) α(D) where FD is the nominal distribution under

the set D ∈ 2A. Intuitively, α(D) represents a robust measure of attractiveness.

To gain some intuition about how the DRO-RUM adds new insights, we

consider the case of the χ2-divergence ϕ(t) = 1
2 (t − 1)2. In this case, it is

straightforward to show that ϕ∗(s) = s + 1
2s

2. Defining the random variable

HD ≜ maxj∈D{uj + εj}, we can use the expression (16) in Proposition 2 to

show that:

α(D) = α(D) +
√
2ρV(HD) ∀D ⊆ A (34)

where α(D) is the original surplus associated with menu D, ρ is the robustness

index, and V(HD) is the variance of HD. Then, replacing α(D) by α(D) in

the program (32) (or solution (33)), we find that a robust optimal attention

allocation rule πρ is given by:

πρ(D) =
exp(θ(α(D) +

√
2ρV(HD)))∑

C⊆A exp(θ(α(C) +
√

2ρV(HC)))
∀D ⊆ A. (35)

Some remarks are in order. First, in the expression (35) is easy to see that

when ρ −→ 0 we recover πρ −→ π. Second, π̄ρ shows that a robust DM will

assign probabilities to different sets under limited consideration by considering

the sum of α(D) and the standard deviation ofHD. In particular, the expression

(35) establishes that the probability of selecting the choice set D is increasing in

the variability of HD. In other words, by using the optimistic case for α(D), we
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model consideration sets where the DM prefers sets with more variability. This

fact is counter intuitive, as it is reasonable to assume that the DM is risk averse

and she may penalize the uncertainty associated to different sets. In order to

capture this behavior, we consider the pessimistic version of α(D) denoted by

α(D). Using the χ2-divergence, we get:

ᾱ(D) = α(D)−
√
2ρV(HD) ∀D ⊆ A. (36)

The expression (36) captures a situation where the DM dislikes the variabil-

ity associated to HD. Accordingly, a pessimistic allocation rule πρ(D) can be

expressed as (35) by replacing α(D) with α(D).

5 Numerical Experiments

In this section, we discuss numerical simulations of our approach. We compare

the DRO-RUM with the MNL and MNP models.10

For ease of exposition, in this section we focus in the DRO-RUM defined in

(14).Accordingly, our main goal is to analyze the effect of the robustness index

ρ on the choice probabilities. We consider a scenario with four alternatives

where J = {0, 1, 2, 3}. Our first parametrization of the utility vector u is

u = (0, 1, 2, 2.1)
T
. Based on this specification, we proceed to calculate the choice

probabilities. In the case of the MNL, the choice probabilities are computed via

Eq. (4) , where the scale parameter equals one ( η = 1). In addition, we set

the location parameter of each Gumbel error is assumed to zero. For the MNP,

we consider two different parametrizations for the variance-covariance matrix of

the random error vectors; N (0,Σ1) and N (0,Σ2) where

Σ1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , Σ2 =


2 −0.5 0.5 1.3

−0.5 2 0 0.15

0.5 0 2 1

1.3 0.15 1 2

 .

We call the latter model MNP-dep and the former MNP-indep, as the ran-

dom errors εj for j = 0, 1, 2, 3 are independent in the former model. We use

10,000,000 draws from the error vectors to stabilize the simulations to simulate

the choice probabilities.

For the DRO-RUMs, we choose the Kulback-Leibler- divergence case presented

in Example 1. We assume that the error terms of the nominal distribution

are iid Gumbel distributed with location parameter zero and scale parameter

one. This yields a way to examine the behavior and numerical stability of the

DRO-RUM, and the impact of ρ on the choice probabilities.

The robust choice probabilities are simulated similarly to the MNP mod-

els. However, for the case of DRO-RUM we have to generate samples from

the distribution defined by the density (24). First, the optimal λ⋆ in (23) as

10We recall that the MNP assumes that the error terms follow a normal distribution with

a specific variance-covariance matrix.
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well as EF

(
eH(u,ε)/λ⋆)

are estimated using 50, 000, 000 simulations from 4 iid

Gumbel distributions. Based on the optimized parameters a higher dimensional

acceptance-rejection algorithm provides an efficient sampling method. For per-

formance, the code was written in Julia.11

We present the results in Table 2

Alternative 1 Alternative 2 Alternative 3 Alternative 4

MNL 5.1885% 14.1037% 38.3379% 42.3699%

MNP-indep 1.6243% 10.2996% 41.443% 46.6331%

MNP-dep 1.7877% 19.359% 37.9993% 40.854%

ρ = 0.1 9.2391% 18.4783% 33.695% 38.587%

ρ = 0.7 13.2132% 19.7823% 31.6066% 35.3979%

ρ = 1.3 15.4725% 21.5501% 30.5269% 32.4505%

ρ = 2.2 18.1501% 21.46% 29.7536% 30.6363%

ρ = 4.3 21.5843% 23.2006% 27.1235% 28.0916%

Table 2: Choice Probabilities for utility vector u = (0, 1, 2, 2.1)
T

.

In the previous table, the first row displays the choice probability for the

MNL. The second and third rows show the choice probabilities for the MNP-

indep and MNP-dep. The fourth row shows the behavior of the DRO-RUMwhen

ρ = 0.1. For this parametrization, the DRO-RUM yields choice probabilities

that are similar (not equal) to the ones displayed by the MNP-dep. Similar

behavior is observed for the case of ρ = 0.7.

Rows six to eight show the behavior of the DRO-RUM as we increase ρ.

As expected, as the value of ρ increases, the choice probabilities look similar

to the uniform choice between alternatives. In particular, for the case of ρ =

4.3 we note that DRO-RUM assigns probabilities similar to the uniform case.

Intuitively, a large ρ , represents a situation where the analyst is highly uncertain

about the true distribution. Thus, her behavior is overly cautious and considers

a large set of possible (and feasible) distributions. Hence, when ρ −→ ∞, the

analyst’s best choice is to guess uniform probabilities.

Similarly, from the DM’s perspective, large values of ρ indicate a cautious

and flexible choice of the error term. Consequently, the random error term

might follow a distribution that completely counteracts the deterministic utili-

ties’ effects and guarantees the same overall random utility for every alternative.

Indeed, the robust surplus function (22) is strongly increasing with a larger in-

dex of robustness as shown in Figure 2, where we plot the surplus function

evaluated at u = (0, 1, 2, 2.1)
T
for different values of ρ.

11The code can be found on Github under https://github.com/rubsc/rejection DRO RUM.

We point out that in order to obtain the results for the DRO-RUM defined by (15), the code

can be easily modified.
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Figure 2: Robust surplus WDRO for the utility vector u and different values of

robustness index ρ.

A well-known pitfall of the MNL model is that it satisfies the independence

of irrelevant alternatives (IIA) property. The IIA property establishes that the

ratio between the probabilities of any two alternatives only depends on the dif-

ferences between the utilities of these two alternatives. This property follows

directly via formula (4). A direct implication of this fact is that when the de-

terministic utility of one alternative changes, the choice probabilities change

proportionally so that the probability ratio between alternatives remains con-

stant. In contrast, the DRO-RUM incorporates some dependence structure into

the MNL.12 Hence, it is interesting to simulate choice probabilities for a slight

change in the deterministic utility vector. In Table 3, we summarize the choice

the probabilities for the alternatives with utility vector ũ = (0, 1, 2, 2.2)
T
.

12We recall that we are assuming that the nominal distribution is Gumbel.
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Alternative 1 Alternative 2 Alternative 3 Alternative 4

MNL 4.9671% 13.5021% 36.7024% 44.8284%

MNP-indep 1.4758% 9.5821% 39.2676% 49.6745%

MNP-dep 1.5544% 18.5851% 36.0749% 43.7856%

ρ = 0.1 6.8788% 15.0473% 36.5434% 41.5305%

ρ = 0.7 13.2076% 20.2437% 30.8569% 35.6918%

ρ = 1.3 15.2938% 21.5069% 30.7281% 32.4712%

ρ = 2.2 17.9704% 21.4406% 29.5254% 31.0636%

ρ = 4.3 21.5509% 23.264% 27.4421% 27.743%

Table 3: Choice Probabilities for utility vector ũ = (0, 1, 2, 2.2)
T

The violation of IIA, is visualized in Figure 3. Note that in the MNL, the

decrease in choosing alternative 4 evenly increases the probability of choosing

one of the alternatives 1 − 3, indicated by the dotted line. At the same time,

the substitution patterns for the robust models are way more flexible.

Figure 3: Relative change in probabilities if deterministic utility vector changes

from ũ to u.

6 Extension: A Sinkhorn DRO-RUM approach

In the previous sections, we study the DRO-RUM approach, where the uncer-

tainty set Mϕ(F ) was defined using ϕ-divergences. A natural and important
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question arises regarding the generality of our results in terms of different ways

of defining the uncertainty set.

The goal of this section is to extend our discussion to the scenario where the

set Mϕ(F ) is defined using the Sinkhorn distance. This approach, known as

the Sinkhorn-DRO, is a recent development outlined by Wang et al. (2023) in

the context of DRO problems.

We begin our analysis by formalizing the notion of Sinkhorn distance. In

doing so, we introduce the following notation: for a measurable set Z, P(Z)

denote the set of probability distributions on Z. Similarly, let M(Z) denote

the set of measures in Z.

Definition 2 (Sinkhorn Distance) Let Z be a measurable set. Consider dis-

tributions F,G ∈ P(Z) where P(Z) is the set of probability distributions on Z.

Let µ, ν ∈ M(Z) be two reference measures such that F ≪ µ,G ≪ ν. For

regularization parameter ϵ ≥ 0, the Sinkhorn distance between two distributions

F and G is defined as

Wδ(F,G) = inf
γ∈Γ(F,G)

{
E(x,y)∼γ [c(x, y)] + δH(γ | µ⊗ ν)

}
,

where Γ(F,G) denotes the set of joint distributions whose first and second

marginal distributions are F and G respectively, c(x, y) denotes the transport

cost, and H(γ | µ ⊗ ν) denotes the relative entropy of γ with respect to the

product measure µ⊗ ν :

H(γ | µ⊗ ν) = E(x,y)∼γ

[
log

(
dγ(x, y)

dµ(x)dν(y)

)]
,

where dγ(x,y)
dµ(x)dν(y) stands for the density ratio of γ with respect to µ⊗ ν evaluated

at (x, y).

Some remarks are in order. First, we note that Wϵ(F,G) is defined in terms

of an entropic-regularized optimal transport (OT) problem. The goal is to

minimize the regularized expected cost by choosing an optimal join distribution

γ with prescribed marginals F and G. The entropic regularization term δH(γ |
µ ⊗ ν) is a crucial element in the definition. It distinguishes the Sinkhorn

distance Wδ from the Wasserstein distance approach (?). The introduction of

this term, as studied in Wang et al. (2023), facilitates the derivation of strong

duality results in the analysis of DRO problems. A second observation is the role

of the cost function c(x, y). It is defined for points x ∈ suppF and y ∈ suppG.

Different choices for c have been studied in the OT literature, including examples

like the Mahalanobis distance c(x, y) = (x − y)Ω(x − y) where Ω is a positive

definite matrix and the ℓ2-norm c(x, y) = 1
2∥x−y∥22. The role of c at an intuitive

level is similar to the role of the ϕ-function in the ϕ-divergence approach. A

third crucial aspect concerns the selection of measures µ and ν. As outlined

in Wang et al. (2023), we adopt µ = F , and for ν, we opt for the Lebesgue

measure. For an in-depth exploration of this issue, please refer to Remark 4 in

Wang et al. (2023). Furthermore, it’s noteworthy that in the case where δ = 0,
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the Sinkhorn distance coincides with the Wasserstein distance. This section

exclusively considers situations where δ > 0. Lastly, to keep the consistency

with the DRO-RUM, we set Z = RJ+1.

Using the notion of Sinkhorn distance, we define the set of feasible (admis-

sible) distributions as:

Mρ,δ(F ) = {G : Wδ(F,G) ≤ ρ} (37)

Accordingly, we define the optimistic DRO surplus as follows:

∼
W (u) ≜ sup

G∈Mρ,δ(F )

EG

(
max
j∈J

{uj + εj}
)
, (38)

while the pessimistic case is defined as:

W
∼
(u) ≜ inf

G∈Mρ,δ(F )
EG

(
max
j∈J

{uj + εj}
)

(39)

It is easy to see that expressions (38) and (39 are similar to the definitions

(5) and (6) respectively. The main difference is given by the substitution of the

uncertainty set Mϕ(F ) with Mρ,δ(F ).

In line with Wang et al. (2023), in our analysis we assume the following

technical conditions.13

Assumption 3 Let H(u, z) = maxj∈J {uj + zj} and c(ε, z) be a cost function.

We assume that the following hold.

(i) ν{z : 0 ≤ c(ε, z) < ∞} = 1 for µ-almost every ε;

(ii) Ez∼ν

[
e−c(ε,z)/δ

]
< ∞ for µ-almost every ε;

(iii) For every joint distribution γ on RJ+1 × RJ+1 with first marginal distri-

bution µ, it has a regular conditional distribution γε given the value of the

first marginal equals ε.

(iv) There exists λ > 0 such that Ez∼Qε,ϵ

[
eH(u,z)/(λδ)

]
< ∞ for µ-almost every

ε.

We are ready to establish the following result:

Proposition 4 Let Assumption 1 and 3 hold and define the random variable

H(u, z) ≜ maxj∈J {uj + zj}. Then the following statements hold:

(i) The problem (38) is equivalent to solving the following finite-dimensional

convex program:

∼
W (u) = inf

λ≥0

{
λρ+ λδEε∼F

[
logEz∼ν

[
e(H(u,z)−λc(ε,z))/(λδ)

]]}
(40)

where λ is the Lagrange multiplier associated to the uncertainty set Mρ,δ(F ).

Furthermore, the program (40) is jointly convex in (λ, u).

13We recall that we set µ = F and ν is the assumed to be the Lebesgue measure.
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(ii) The problem (39) is equivalent to solving the following finite-dimensional

concave program:

W
∼
(u) = sup

λ≥0

{
−λρ− λδEε∼F

[
logEz∼ν

[
e(−H(u,z)−λc(ε,z))/(λδ)

]]}
(41)

where λ is the Lagrange multiplier associated to the uncertainty set Mρ,δ(F ).

Furthermore, the program (41) is concave in (λ, u).

The preceding outcome characterizes the robust social surplus functions (38)

and (39) through a one-dimensional optimization problem. Notably, the vari-

able λ corresponds to the Lagrange multiplier linked to the constraint imposed

by Mρ,δ(F ). This characterization bears similarity to the one in Proposition

2. However, there exist noteworthy distinctions between the two. Firstly, the

characterization in Proposition 4 is contingent on the choice of the cost function

c and the degree of robustness ρ, while the result in Proposition 2 relies on the

choice of the ϕ-function. Secondly, in Proposition 4, there is no requirement to

compute the conjugate of the cost function c. In the case of the ϕ-divergence

function approach, the finite-dimensional characterization is contingent upon

knowledge of the convex conjugate of ϕ∗.

For the sake of exposition, throughout this section, we primarily focus on

the case of
∼
W (u). We are now ready to generalize the WDZ theorem in the

context of the Sinkhorn distance.

Proposition 5 Let Assumptions 1 and 3 hold. Let λ
⋆
> 0 be an optimal solu-

tion to program (40). Then the following statements hold:

(i) The optimal distribution is given by:

d
∼
G

⋆

(z)

dν(z)
= Eε∼F [αε · exp ((H(u, z)− λ∗c(ε, z)) / (λ∗δ))]

where αε ≜ (Ez∼ν [exp (H(u, z)− λ∗c(ε, z)) / (λ∗δ)])
−1

(ii) The robust social surplus corresponds to the following:

∼
W (u) = E∼

G
⋆

(
max
j∈J

{uj + εj}
)

where
∼
G

⋆

is the distribution induced by (42).

(iii) The choice probability vector
∼
p
⋆
(u) is given by:

∇
∼
W (u) =

∼
p
⋆
(u).

In part (i) of the preceding result, we learn how to construct the optimal

distribution
∼
G

⋆

. It is evident that the construction of
∼
G

⋆

differs from the optimal

robust distribution in the case of ϕ-divergences. Part (ii) establishes that the
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surplus function
∼
W (u) takes the traditional form of an expected value over

the maximum of random utilities. Importantly, part (iii) demonstrates that the

WDZ holds in this case. This crucial observation plays a key role in establishing

Robust Fenchel duality for situations where the uncertainty set is defined by

Mρ,δ(F ). The following proposition formalizes this result.

Proposition 6 Let Assumptions 1 and 3 hold. Then:

(i) For
∼
W (u)and

∼
p ∈ ∆J+1, and u ∈ U the following holds:

∼
p = ∇

∼
W (u) ⇔ u = ∇

∼
W ∗(

∼
p). (42)

(ii) For W
∼
(u)and p

∼
∈ ∆J+1, and u ∈ U the following holds:

p
∼
= ∇W

∼
(u) ⇔ u = ∇W

∼
∗(p

∼
). (43)

The significance of the preceding result lies in its capability to extend the ro-

bust Fenchel duality analysis beyond the ϕ-divergence framework to include the

Sinkhorn distance. Notably, a direct implication of Proposition 7 is the feasi-

bility of addressing the robust inverse demand problem using the OT approach.

The following result formalizes this fact.

Proposition 7 Let Assumptions 1 and 3 hold. Let p̂ be an observed (market

data) choice probability vector. Then

(i) (
∼
u
⋆
,
∼
λ
⋆

) is the unique solution to the convex optimization problem:

−
∼
W

∗
(p̂) = inf

u∈U,λ∈R+

{
λρ+ λδEε∼F

[
logEz∼ν

[
e(H(u,z)−λc(ε,z))/(λδ)

]]
− ⟨p̂, u⟩

}
.

(44)

where
∼
W

⋆

(p̂) is the convex conjugate of
∼
W (u).

(ii) (u
∼
⋆, λ

∼
⋆) is the unique solution to the concave optimization problem:

−W
∼

∗(p̂) = sup
u∈U,λ∈R+

{
−λρ− λδEε∼F

[
logEz∼ν

[
e(−H(u,z)−λc(ε,z))/(λδ)

]]
− ⟨p̂, u⟩

}
.

(45)

where W
∼

⋆(p̂) is the concave conjugate of W
∼
(u).

We conclude this section with a note on the computational complexity of

the OT approach. As demonstrated in Proposition 4, the Sinkhorn Sinkhorn

DRO-RUM can be formulated as a one-dimensional optimization program. This

property allows the utilization of various stochastic optimization algorithms to

find both
∼
W (u) and W

∼
(u), respectively. Notably, Wang et al. (2023) propose an

algorithm that can be implemented for the analysis of the Sinkhorn DRO-RUM.

We defer the exploration of numerical properties and performance, as well as a

comparative study with the ϕ-divergence approach, to future research.
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7 Final remarks

In this paper, we introduced the DRO-RUM approach, allowing for unknown or

misspecified shock distributions. We demonstrated that the DRO-RUM main-

tains the tractability and convex structure of the traditional Random Utility

Model (RUM). Additionally, we characterized the robust Fenchel duality in the

context of the DRO-RUM. Our results proved valuable in addressing the de-

mand inversion problem, the DRO-RUM random coefficient model, and a model

combining robustness with consideration sets. Furthermore, we established the

stability and numerical properties of our approach. Finally, we discussed the

straightforward extension of all our results when modeling the uncertainty set

using the Sinkhorn distance.

Several potential extensions arise from our findings. For instance, the results

presented in this paper could contribute to the study of two-sided matching mar-

kets with transferable utility. Additionally, our results are applicable to investi-

gating robust identification in dynamic discrete choice models. The algorithmic

aspects of the DRO-RUM also warrant analysis. Notably, a recent introduction

by Müller et al. (2022) of a new family of prox-functions on the probability sim-

plex based on discrete choice models raises the intriguing question of whether

prox-functions can be generated from the DRO-RUM
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A Proofs

A.1 Proof of Proposition 1

The proof that Dϕ(G∥F ) is well defined and nonnegative follows from Propo-

sition 1 in Ben-Tal and Teboulle (1987). The convexity of Dϕ follows from

Proposition 2 in Ben-Tal and Teboulle (1987). □

A.2 Proof of Lemma 1

(i) The definition provides

W (u+ c · e) = sup
G∈Mϕ(F )

{
EG

[
max
j∈J

{uj + εj + c}
]}

Due to the linearity of the expectation, it holds

c+ sup
G∈Mϕ(F )

EG

[
max
j∈J

{uj + εj}
]
= c+W (u).

(ii) Take any u, v ∈ RJ+1 with u ≥ v. First we note that for any arbitrary

feasible distribution G ∈ Mϕ(F ) it holds

W (u) ≥ EG

[
max
j∈J

{uj + εj}
]

(∗)
≥ EG

[
max
j∈J

{vj + εj}
]
,

where (∗) holds due to the monotonicity of the expectation. Taking the

supremum on the right-hand side, we conclude that W (u) ≥ W (v).

(iii) We deduce that for any i ∈ J

W (u) ≥ EF

[
max
j∈J

{uj + εj}
]
≥ EF [ui + εi] ≥ ui +min

j∈J
EF [εj ] ,

which is finite due to Assumption 1.

(iv) We deduce that for any i ∈ J

W (u) ≤ EF

[
max
j∈J

{uj + εj}
]
≤ max

j∈J
uj + EF

[
max
j∈J

εj

]
,

which is finite due to Assumption 1.

□

A.3 Proof of Proposition 2

Part (i) follows from a direct application of Proposition 7.9 in Ruszczyński

and Shapiro (2021). The proof of part (ii) follows from applying the same

arguments. For completeness, we provide the details of the argument behind

(i). First, we note that for a fixed utility vector u and using the likelihood ratio

L(ε) ≜ dG(ε)/dF (ε), the DRO-RUM in (14) can be expressed as:
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W (u) = sup
G

{EG(H(u, ε)) : G ∈ Mϕ(F )}

= sup
L≥0

{EF [L(ε)H(u; ε)] | EF [ϕ(L(ε))] ≤ ρ,EF [L(ε)] = 1} (46)

where the supremum is over a set of measurable functions.

The Lagrangian of problem (46) is :

L(L, λ, µ) =
∫
RJ+1

[L(ε)H(u, ε)− λϕ(L(ε))− µL(ε)]dF (ε) + λρ+ µ. (47)

The Lagrangian dual of problem (47) is the problem

inf
λ≥0,µ∈R

sup
L≥0

L(L, λ, µ) (48)

Since Slater condition holds for problem (47)14, there is no duality gap

between (47) and its dual problem (48). Moreover, the dual problem has a

nonempty and bounded set of optimal solutions.

By the interchangeability principle (Theorem 3A in Rockafellar (1976)), the

maximum in (48) can be taken inside the integral, that is

sup
L≥0

∫
RJ+1

[L(ε)H(u, ε)− µL(ε)− λϕ(L(ε))]dF (ε)

=

∫
RJ+1

sup
t≥0

{t(H(u, ε)− µ)− λϕ(t)}dF (ε),

Noting that (λϕ)∗(H(u, ε)−µ) = supt≥0{t(H(u, ε)−µ)−λϕ(t)}, then it follows

that

W (u) = inf
λ≥0,µ∈R

{λρ+ µ+ EF [(λϕ)∗(H(u, ε)− µ)]} . (49)

To show the convexity with respect to λ and µ we note that it suffices in

(48) and (49) to take the inf with respect to λ > 0 rather than λ ≥ 0, and that

(λϕ)∗(y) = λϕ∗(y/λ) for λ > 0. Therefore WDRO(u) is given by the optimal

value of the following problem:

inf
λ>0,µ∈R

{λρ+ µ+ λEF [ϕ∗((H(u, ε)− µ)/λ)]} (50)

Note that ϕ∗(·) is convex. Hence, λϕ∗(y/λ) is jointly convex in y and λ > 0. It

follows that the objective function of problem (50) is a convex function of λ > 0

and µ ∈ R with y = H(u, ε)− µ. Hence (50) is a convex problem. □

A.4 Proof of Corollary 1

Let us look at problem (46). If ρ = 0 we get from one constraint that

EF [ϕ(L(ε))] ≤ 0.

14For instance, we can take L(ε) = 1 for all ε ∈ RJ+1.
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Due to the definition of ϕ, this implies that L(ε) = 1. Hence, the Lagrangian

simplifies since the supremum over the densities becomes trivial. Let us plug

L(ε) = 1 into Equation (47):

L(L, λ, µ) =
∫
RJ+1

H(u, ε)− λ · ϕ(1)︸︷︷︸
=0

−µ · 1]dF (ε) + λ · 0 + µ.

The latter is equivalent to

EF [H(u, ε)− µ] + µ = EF [H(u, ε)] ,

where the last equality holds due to the linearity of expectation. We indeed

recover W (u) for any distribution satisfying Assumption 1. A similar argument

applies to W (u). Thus, we conclude that W (u) = W (u) = W (u). □

A.5 Proof of Lemma 2

Due to Assumption 2, the function ϕ∗ is strictly convex. Following similar steps

as Dacorogna and Maréchal (2008), it follows that λ · ϕ∗( sλ ), λ > 0, is strictly

convex. Further, the sum of a convex and strictly convex is strictly convex.

This latter fact immediately implies strict convexity of the objective function

in λ and µ. Given the strict convexity in λ and µ, it follows that program (16)

has a unique solution. A similar argument holds for the program (17). □

A.6 Proof of Theorem 1

We only show part (i). The proof for (ii) is identical. To show the first part, let

us define the function Ψ(·) as follows Ψ(λ, µ) ≜ λρ+µ+λEF

(
ϕ∗
(

H(u,ε)−µ
λ

))
.

Optimizing Ψ(λ, µ) with respect to λ and µ we get

∂Ψ(λ, µ)

∂λ
= ρ+ EF

(
ϕ∗

(
H(u, ε)− µ

λ

))
(51)

+ λEF

(
ϕ∗′

(
H(u, ε)− µ

λ

)(
H(u, ε)− µ

−λ2

))
= 0

∂Ψ(λ, µ)

∂µ
= 1− EF

(
ϕ∗′

(
H(u, ε)− µ

λ

))
= 0

Rearranging the first equation, we have:

λρ+ λEF

(
ϕ∗
(
H(u, ε)− µ

λ

))
+ µEF

(
ϕ∗′
(
H(u, ε)− µ

λ

))
=EF

(
ϕ∗′
(
H(u, ε)− µ

λ

)
H(u, ε)

)
.

Similarly, in the second equation, we have:

EF

(
ϕ∗′
(
H(u, ε)− µ

λ

))
= 1

Combining both expressions we find that the optimal λ⋆ and µ⋆ must satisfy:

λ⋆ρ+ λ⋆EF

(
ϕ∗
(
H(u, ε)− µ⋆

λ⋆

))
+ µ⋆ = EF

(
ϕ∗′
(
H(u, ε)− µ⋆

λ⋆

)
H(u, ε)

)
.
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Using expression (18) in Lemma 3, we obtain that the optimal solution λ
⋆

and µ⋆ satisfies:

Ψ(λ
⋆
, µ⋆) = EF

(
ϕ∗′
(
H(u, ε)− µ⋆

λ
⋆

)
H(u, ε)

)
= EG

⋆

(
max
j∈J

{uj + εj}
)
.

Hence, we conclude that

W (u) = EG
⋆

(
max
j∈J

{uj + εj}
)
.

(ii) To show that ∇W (u) = p⋆(u), we note that using the optimized value

Ψ(λ
⋆
, µ⋆) = λ

⋆
ρ+ µ⋆ + λ

⋆EF

(
ϕ∗
(

H(u,ε)−µ⋆

λ
⋆

))
we get:

∂W (u)

∂uj
=

∂Ψ(λ
⋆
, µ⋆)

∂uj

=

∫
ε∈RJ+1

(
ϕ∗′
(
H(u, ε)− µ⋆

λ
⋆

)
∂H(u, ε)

∂uj

)
f(ε)dε

= EG
⋆

(
∂H(u, ε)

∂uj

)
= p⋆j (u).

As previous result holds for all j ∈ J , we get that ∇W (u) = p⋆(u). □

A.7 Proof of Lemma 4

For given λ and µ, for u1, u2 and α ∈ (0, 1) we have

λEF

(
ϕ∗
(
H(αu1 + (1− α)u2, ε)− µ

λ

))
(⋆)

≤ λEF

(
ϕ∗
(
αH(u1, ε) + (1− α)H(u2, ε)− µ

λ

))
,

where (⋆) holds due to the convexity of H and the monotonicity of ϕ∗ due

to Assumption 2. Exploiting the strict convexity of ϕ∗ and the linearity and

monotonicity of the expectation operator further yields:

λEF

(
ϕ∗
(
αH(u1, ε) + (1− α)H(u2, ε)− µ

λ

))
<αλEF

(
ϕ∗
(
H(u1, ε)− µ

λ

))
+ (1− α)λEF

(
ϕ∗
(
H(u2, ε)− µ

λ

))
.

Thus it follows that W (u) is strictly convex in u. To establish the concavity of

W (u), we can apply the similar line of reasoning as before noting that −H(u, ε)

and −ϕ∗ are concave functions. □
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A.8 Proof of Theorem 2

Let us first show that domW
∗ ⊆ ∆J+1. Fix a utility vector ū and take any

p ∈ RJ+1 with ⟨p, e⟩ ≠ 1. Then, using Lemma 1 (iii) we have

W
∗
(p) ≥ sup

γ∈R
⟨p, ū+ γ · e⟩ −W (ū+ γ · e)

(iii)
= ⟨p, ū⟩ −W (ū) + sup

γ∈R
γ (⟨e, p⟩ − 1) = ∞.

Next, we take any vector p ∈ RJ+1 with pi < 0 for some i ∈ {0, 1, . . . , J}. By

Lemma 1 (ii), it follows that

W
∗
(p) ≥ sup

γ<0
⟨p, γ · ei⟩ −W (ei)

(ii)

≥ sup
γ<0

γ · pi,−W (0) = ∞.

Hence, it remains to prove the reverse implication, i. e. ∆J+1 ⊆ domW
∗
. There-

fore, we derive an upper bound for the convex conjugate on the simplex:

sup
p∈∆J+1

W
∗
(p) = sup

p∈∆J+1

(
sup
u∈U

⟨p, u⟩ −W (u)

)

= sup
u∈U

(
sup

p∈∆J+1

⟨p, u⟩ −W (u)

)
.

We apply (iii) from Lemma 1 which yields

sup
u∈U

(
sup

p∈∆J+1

⟨p, u⟩ −W (u)

)
= sup

u∈U

(
max
i∈J

ui −W (u)

)
≤ −min

i∈J
EF [εi] .

Thus, the domain coincides with the simplex. For the continuity, we first ob-

serve that W
∗
is convex, and hence it is continuous on the relative interior of

its domain. The Gale-Klee-Rockafellar theorem provides upper semi-continuity

of W
∗
if the domain is polyhedral, which it is (Rockafellar, 1970). Furthermore,

convex conjugates are always lower semi-continuous, and hence continuity fol-

lows. In order to establish that W
∗
is continuously differentiable, we note that

Lemma 4 shows that W
∗
is strictly convex in u. Then by Theorem 4.1.1 in

Hiriart-Urruty and Lemarechal (1993), we know that the strict convexity of

W (u) implies that W
∗
(p) is continuously differentiable on int

(
domW

∗)
. □

A.9 Proof of Theorem 3

The equivalence of parts (i) and (ii) follows from Theorems 1 and 2, which allows

us to invoke Fenchel equality to conclude the result. □

A.10 Proof of Proposition 3

Proposition 2 implies that the previous expression corresponds to

W
∗
(p̂) = sup

u∈U

{
⟨p̂, u⟩ − inf

λ>0,µ∈R

{
λρ+ µ+ λEF

(
ϕ∗
(
H(u, ε)− µ

λ

))}}
.
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Equivalently, we have:

W
∗
(p̂) = − inf

u∈U,λ>0,µ∈R

{
λρ+ µ+ λEF

(
ϕ∗
(
H(u, ε)− µ

λ

))
− ⟨p̂, u⟩

}
.

Thus, we get:

−W
∗
(p̂) = inf

u∈U,λ>0,µ∈R

{
λρ+ µ+ λEF

(
ϕ∗
(
H(u, ε)− µ

λ

))
− ⟨p̂, u⟩

}
.

Combining Lemmas 2 and 4 we get that the (29) is strictly convex in u, λ, and

µ. As a consequence, there exists a unique solution to the problem (29). □

A.11 Proof of Proposition 4

(i) Under Assumptions 1 and 3 allows us to apply Theorem 1[(iii)] in Wang et al.

(2023) to establish that (39) is equivalent to solve the finite dimensional program

(41). To establish the convexity in (λ, u), we note that λδEε∼F

[
logEz∼ν

[
e(H(u,z)−λc(ε,z))/(λδ)

]]
is convex in (λ, u). Then by adding this convex function to λρ, we conclude that

program (41) is convex in (λ, u). (ii) To show this we note that

W
∼
(u) = − sup

G∈Mρ,δ(F )

−W (u) = − sup
G∈Mρ,δ(F )

EG

(
−max

j∈J
{uj + εj}

)
.

Then, we can apply the argument in part (i) to

sup
G∈Mρ,δ(F )

EG

(
−max

j∈J
{uj + εj}

)
,

and the conclusion follows at once. □

A.12 Proof of Proposition 5

The proof of part (i) follows from Remark 4 in Wang et al. (2023). To show

part (ii), we note that for λ⋆, we note that from the first order condition we get:

λ∗ρ+ λ∗δEε∼F

[
logEz∼ν

[
e(H(u,z)−λc(ε,z))/(λ∗δ)

]]
= Eε∼F

[
Ez∼ν

[
e(H(u,z)−λ∗c(ε,z))/(λ∗δ)H(u, z)

]
Ez∼ν

[
e(H(u,z)−λ∗c(x,z))/(λ∗δ)

] ]
,

= E∼
G

⋆

(
max
j∈J

{uj + εj}
)
.

To establish (iii), we note that from (ii) with λ⋆ > 0, we can use the envelope

theorem to obtain:

∂

∂ui

[
λ∗ρ+ λ∗δEε∼F

[
logEz∼ν

[
e(H(u,z)−λc(ε,z))/(λ∗δ)

]]]
= Eε∼F

Ez∼ν

[
e(H(u,z)−λ∗c(ε,z))/(λ∗δ) ∂H(u,z)

∂uj

]
Ez∼ν

[
e(H(u,z)−λ∗c(x,z))/(λ∗δ)

]
 .

From part (ii) it follows that the last term can be expressed as

∂
∼
W (u)

∂uj
= E∼

G
⋆

(
∂H(u, ε)

∂uj

)
=

∼
p
⋆

j (u).
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The previous conclusion holds for all j ∈ J . Thus, it follows that ∇
∼
W (u) =

∼
p
⋆
(u). □

A.13 Proof of Proposition 6

(i) In order to prove (i) we first note that the properties in Lemma 1 holds for

the case
∼
W (u) and W

∼
(u) are satisfied. In particular, for the case

∼
W (u) we have

that property (iii) in Lemma 1 holds. Then, the argument in Theorem 2 also

applies to the case of
∼
W

∗
(p) and we get that ∇

∼
W

∗
(p) = u.The combination of

this fact with Proposition 5(iii) allows us to invoke Fenchel equality to conclude

(42). The equivalence of parts (i) and (ii) follows from Theorems 1 and 2, which

allows us to invoke Fenchel equality to conclude the result. □

A.14 Proof of Proposition 7

The proof follows from applying the same argument used in th proving Propo-

sition 3. □


