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random utility maximization hypothesis and the existence of a representative agent. Our result is stated
on terms of a direct utility representation, and it does not depend on parametric assumptions.
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1. Introduction

In this paper, we propose a way of modeling sequential
discrete decision processes, which is consistent with the random
utility hypothesis and the existence of a representative agent. In
particular, our approach is based on a network representation
for the consumers’ decision process and dynamic programming.1
Combining the aforementioned elements, we show that a demand
system for hierarchical or sequential decision processes can
be obtained as the outcome of the utility maximization by a
representative agent. Our result differs from previous findings in
two important aspects. First, our result is in terms of a direct utility
representation, whilst most of the results available in discrete
choice theory are based on an indirect utility approach.2 Second,
and most important, our result does not depend on parametric
assumptions on the random components associated to the utilities
of different choices. We only require the mild condition that the

E-mail address: emelos@hss.caltech.edu.
1 The idea of analyzing discrete choice models using a network representation

is also considered in Daly and Bierlaire (2006). They derive parametric constraints
such that the class of generalized extreme value models can be implemented in
decision processes represented through a network. Their results can be considered
as special cases of our Theorem 1 in Section 2.
2 For a survey of these results see Anderson et al. (1992).

distribution of the unobserved components must be absolutely
continuous with respect to the Lebesgue measure. Thus given its
generality, our approach and result can beuseful to study ademand
system with complex substitution patterns among the utilities
associated with different choices.

An important feature of our result is that when we assume the
specific double exponential distribution for the unobserved com-
ponents, we show that the nested logit model can be seen as a
particular case of our approach. In particular, we show that a se-
quential logit under specific parametric constraints coincides with
the nested logit model (McFadden, 1978a,b, 1981).3 This result
generalizes previous findings in Borsch-Supan (1990), Konning and
Ridder (1993), Herriges and Kling (1996), Verboven (1996), Kon-
ning and Ridder (2003), and Gil-Molto and Hole (2004). All of these
papers impose parametric constraints in order to be consistent
with the random utility maximization. Our result shows that such
constraints can be avoided using the assumption of sequential de-
cision making.

Finally, from an applied perspective we point out that our
results can be useful to carry out welfare analysis in networked
markets, where the standard discrete choice theorymay not apply.

3 It is worth pointing out that the nested logit model does not need to be
interpreted as a sequential decision process. In fact, its standard justification is
based on preference correlation structure (see, e.g., Anderson et al., 1992).
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For example, our results can be applied to bundling decisions,
merger analysis, or compatibility among goods in networked
markets.4

The paper is organized as follows. Section 2 presents themodel.
Section 3 presents the main result of this paper, and Section 3.1
discusses the logit case. The Appendix A contains the proofs.

2. The model

Let G = (N, A) be a directed graph with N being the set of nodes
and A the set of links respectively.5 Without loss of generality, we
assume that the graphGhas a single origin–destination pair, where
o and t stand for the origin node and destination node respectively.

We identify the set N as the set of decision nodes faced by
consumers, and the set A is identified as the set of the available
goods in this economy, i.e., the good a is represented by the link
a ∈ A.6 Thus, starting in the origin o, consumers can choose
bundles of goods through the choice of links on A. The destination
t is interpreted as the node that is reached once consumers have
chosen their desired bundles of goods, and then they leave the
market.

For each good a ∈ A, consumers’ valuation is represented by
θa ∈ R++. Similarly, pa ∈ R+ is the price associated to good a. Thus,
the utility for good a may be written as ua = θa − pa. We assume
that there exists a continuumof userswith unitarymass. According
to this, let d = (da)a∈A a non-negative flow vector, where da ≥ 0
denotes the demand for good a. Any flow vector dmust satisfy the
flow conservation constraints
a∈A−

i

da =


a∈A+

i

da ∀i ∈ N, (1)

where A−

i denotes the set of links ending at node i, and A+

i denotes
the set of links starting at node i. The set of feasible flows is denoted
by D .

It isworth emphasizing that in this paperwe interpret eachpath
in the graph as a bundle of goods.7 This interpretation allows us to
see the goods within a bundle as complements, and different paths
can be viewed as substitute goods.

In order to introduce heterogeneity into the model, we assume
that consumers are randomly drawn from a large population.
According to this, the random utilityua may be defined asua = ua + ϵa ∀a ∈ A+

i , i ∈ N,

with {ϵa}a∈A being a collection of absolutely continuous random
variables with E(ϵa) = 0 for all a. The random variables ϵa’s take
into account the heterogeneitywithin the population. In particular,
these random variables represent the variability of the valuation
θa’s.

In this networked market, consumers choose the optimal bun-
dle of goods in a recursive way. In particular, at each node con-
sumers choose a good considering its utility plus the continuation
value associated to their choices. Formally, at each node i ≠ d we
define the random utility Ṽa as

Ṽa = Va + ϵa (2)

4 For a survey of networked markets in Economics see Economides (1996).
5 In this paper we use dynamic programming techniques, so we do not need to

assume that G is acyclic. See Dasgupta et al. (2006, Chapter 6) for details.
6 The set A can also be called as the set of choices.
7 Wepoint out that the standard discretemodel can be viewed as a particular case

of our approach. In fact, we can define a network with the set of nodes N consisting
of just two nodes, where one node is the source and the other one is the sink, and a
collection of |A| parallel links representing the goods available in the market.

with Va = ua + ϕja(V ) and ϕja(V ) ≡ E(maxb∈A+

ja
{Vb + ϵb}), where

ja denotes that node ja has been reached using the link a.
Regarding Eq. (2) two remarks are important. First, Eq. (2)

makes explicit the recursive nature of the consumers’ choice
process. In particular, consumers reaching node i observe the
realization of the random variables Ṽa, and choose the link a ∈ A+

i
with the highest utility, taking into account the current utility ua
plus the continuation value ϕja(V ).8

The second observation is that (2) makes explicit the assump-
tion that a consumer makes sequential choices. In other words,
consumers maximize utility solving a dynamic programming
problem.9

From previous discussion, it follows that the expected flow xi
entering node i splits among the goods a ∈ A+

i according to

da = xiP(Va + ϵa  Va
≥ Vb + ϵb  Vb

, ∀b ∈ A+

i ). (3)

This recursive discrete choice model generates the following
stochastic conservation flow equations

xi =


a∈A−

i

da. (4)

Using a well known result in discrete choice theory,10 Eqs. (3)–
(4) may be expressed in terms of the gradient of the function
ϕi(·). In particular, the conservation flow Eqs. (3) and (4) may be
rewritten as

da = xi
∂ϕi(V )

∂Va
∀a ∈ A+

i ,

xi =


a∈A−

i

da
(5)

where ∂ϕi(V )

∂Va
= P(Va + ϵa ≥ Vb + ϵb, ∀b ∈ A+

i ).
Following the previous description, it is easy to see that con-

sumers’ choice process can be expressed as aMarkov chain. In par-
ticular, once a consumer reaches a specific node, say node i, then
consumers must make a choice among the goods available in the
set A+

i .
The following definition formalizes the notion of Markovian

assignment in a networked market.11

Definition 1. Let p ≥ 0 be a given price vector. A vector d ∈ R|A|

+

is a Markovian assignment if and only if the da’s satisfy the flow
distribution Eq. (5) with V solving Va = ua + ϕja(V ) for all a ∈ A.

We stress that the previous setting defines consumers utility in
an indirect way. Assuming a specific distribution for the ϵa’s, we
can solve Va = ua + ϕja(V ) and find the demand vector. The next
section establishes the main result of this paper: The Markovian
assignment is equivalent to the demand system generated as the
solution of a direct utility function by a representative consumer.

8 In the discrete choice literature the functions ϕi(·)’s are known as the inclusive
values at node i ≠ d (see McFadden, 1978a,b, 1981, and Anderson et al., 1992).
9 We point out that the idea of modeling discrete choices through a sequential

process was first proposed by Ben-Akiva and Lerman (1985) in order to justify the
nested logit model. Another paper exploiting the idea of sequential discrete choice
models to analyze price competition among multi-product firms is the paper by
Anderson and de Palma (2006).
10 For details see Chapter 2 in Anderson et al. (1992).
11 We point out that an equilibrium notion called Markovian traffic equilibrium
has been introduced in Baillon and Cominetti (2008) and extended to oligopoly
pricing problems in Melo (2011). However, neither Baillon and Cominetti (2008)
nor Melo (2011) analyze the problem that is studied in this paper.
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3. Main result

For the networked market described in Section 2, we consider
there exists a representative consumer endowed with income Y ∈

R++. There is a numeraire good which is indexed by 0, and its
price p0 is normalized to unity. The budget constraint for the
representative consumer is given by

B(p, Y ) =


(d, d0) ∈ R|A|+1

+ :


a∈A

pada + d0 ≤ Y


(6)

where d = (da)a∈A is the demand vector for the good at the
network, and d0 is the demand for good 0. We recall that the
demand d must satisfy the flow constraint (1).

Theorem 1. A representative consumer’s utility function consistent
with the Markovian assignment is given by

U(d) =


a∈A

θada + d0 −


i∈N

χi(d), s.t. (1);

−∞, otherwise
(7)

where χi(d) = supV


a∈A+

i
(Va − ϕi(V ))da


.

It is worth emphasizing four important features of Theorem 1.
First, we note that Theorem 1 does not require independence of

the random variables ϵa’s. Thus this result can deal with complex
correlation patterns among different alternatives.

Second, Theorem 1 is based on a direct utility function for the
representative consumer. In particular, the direct utility function
in expression (7) encapsulates two different components. The first
component, given by the linear term


a∈A θada +d0, expresses the

utility derived from the consumption of (d, d0) in the absence of
interaction among goods. Furthermore, the valuation parameters
θa’s can be viewed as measuring the intrinsic contribution of good
a to the total utility. The second effect is given by −


i∈N χi(d),

which expresses the variety-seeking behavior of the representative
consumer12. The interpretation of variety-seeking behavior has
been given in Anderson et al. (1988).

Third, we note that for the simple case where the number
of goods is |A|, and just two nodes, an origin and a destination,
Theorem 1 provides a direct representation without imposing
parametric assumptions on the collection of ϵa’s. For this simple
case, Theorem 1 generalizes previous results in discrete choice
theory.13

Finally, we note that Theorem 1 can be extended to the case of
endogenous consumption. In particular, instead of considering the
linear component


a∈A θada, we can consider a strictly concave

function F(d; θ) with continuous second derivatives. Using this
function F(d; θ), the strict concavity of the optimization problem
holds, so that we can apply the same reasoning given in the proof
of Theorem 1.

3.1. The sequential logit case

In theoretical and applied work, the nested logit model is the
leading case formodelingmarketswith a tree or network structure.
In this section we show that the nested logit is a particular case of
Theorem 1, which is obtained assuming that at each node i the ϵa’s
are i.i.d. randomvariables follow a double exponential distribution.

12 The terms −


i∈N χi(d) can be viewed as a generalized entropy. In Section 3.1
this interpretation is clearer when we assume that the ϵa ’s follow a double
exponential.
13 For a survey of the results of representative agents and demand system in
discrete choice models see Anderson et al. (1992, Chapter 3).

Proposition 1. Assume that at each node i the random variables ϵa’s
are i.i.d. following a double exponential distribution with location
parameter βi ∈ R++. Then, a representative consumer’s utility
function consistent with the Markovian assignment is given by

U(d) =


a∈A

θada + d0 −


i∈N

χi(d), s.t. (1);

−∞, otherwise
(8)

where χi(d) =
1
βi


a∈A+

i
da log da −


a∈A+

i
da log


a∈A+

i
da


.

We stress that Proposition 1 generates a demand system based
on a sequential logit model. However, after some simple algebra, it
is possible to show that the choice probabilities in Proposition 1 can
be written as a nested logit. In particular, we can find the explicit
parametric constraints on the βi’s such that Proposition 1 yields a
demand system based on a nested logit model.14
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Appendix. Proofs

Proof of Theorem 1. Noting that the utility function U(d) is
strictly concave, the first order conditions are necessary and suf-
ficient for finding a maximum. Using this fact, we can write the
Lagrangian for the consumer’s optimization problem as

L =


a∈A

θada + d0 −


i∈N

χi(d) + λ


Y −


a∈A

pada − d0



+


i∈N

µi


a∈A−

i

da −


a∈A+

i

da

+


a∈A

λada.

The multipliers µi’s and λ ∈ R correspond to constraints (1) and
(6), and da ≥ 0 respectively. For a stationary point we get λ =

1, u∗
a = θa − pa and ζ ∈ ∂(−χ(v)) with ζa = u∗

a + µja − µia and
χ(d) =


i∈N χi(d). For the multipliers λa’s we simply set λa = 0

for all a ∈ A. Taking µi = ϕi((u∗
a + ϕja(V ))a∈A), and combining (1)

and (5) we get

da =
∂ϕia

∂da
(V )


a∈A+

i

da,

which shows that V is an optimal solution for −χ(d). Therefore,
setting ga = ϕia(V ) − Va we get g ∈ ∂(−χ(d)). Combining ϕia(V )
with Va = u∗

a + ϕja(V
∗), it follows that ζ = g ∈ ∂(−χ(d)) as

required. �

Proof of Proposition 1. We can write the Lagrangian for the con-
sumer’s optimization problem as

L =


a∈A

θada + d0 −


i∈N

1
βi


a∈A+

i

da log da

14 The details proving this fact are available upon request.



Author's personal copy

E. Melo / Economics Letters 117 (2012) 862–865 865

−


a∈A+

i

da log


a∈A+

i

da


+ λ


Y −


a∈A

pada − d0



+


i∈N

µi


a∈A−

i

da −


a∈A+

i

da

+


a∈A

λada.

As in Theorem 1, the multipliers µi’s and λ ∈ R correspond to
constraints (1) and (6), and da ≥ 0 respectively. Taking the first
order condition and setting λa = 0, we get

∂L

∂d0
= 1 − λ = 0,

∂L

∂da
= θa − λpa −

1
βi

log da − log


a∈A+

i

da


+ µja − µia = 0 ∀i ∈ N.

Combining (1) and (5), and after some simple algebra we find
that

da = xi
eβi(θa−pa+ϕja )

b∈A+

i

eβi(θb−pb+ϕjb )
∀a ∈ A+

i ,

which is equivalent to

da = xi
eβiVa

b∈A+

i

eβiVb
∀a ∈ A+

i ,

and the conclusion follows at once. �

References

Anderson, S.P., de Palma, A., 2006. Market performance with multi product firms.
The Journal of Industrial Economics 54 (1), 95–134.

Anderson, S.P., de Palma, A., Thisse, J.-F., 1988. A representative consumer theory of
the logit model. International Economic Review 29 (3), 461–466.

Anderson, S.P., de Palma, A., Thisse, J.F., 1992. Discrete Choice Theory and Product
Differentiation. MIT Press, Cambridge, MA.

Baillon, J.B., Cominetti, R., 2008. Markovian traffic equilibrium. Mathematical
Programming, Series B 111, 33–56.

Ben-Akiva, M., Lerman, S., 1985. Discrete Choice Analysis. The MIT Press.
Borsch-Supan, A., 1990. On the compatibility of nested logit models with utility

maximization. Journal of Econometrics 43, 373–388.
Daly, A., Bierlaire, M., 2006. A general and operational representation of generalized

extreme value models. Transportation Research Part B: Methodological 40 (4),
285–305.

Dasgupta, S., Papadimitriou, C.H., Vazirani, U.V., 2006. Algorithms, first ed.McGraw-
Hill.

Economides, N., 1996. The economics of networks. International Journal of
Industrial Organization 14, 673–699.

Gil-Molto, M.J., Hole, A.R., 2004. Tests for the consistency of the three-level nested
logit models with utility maximization. Economics Letters 85, 133–137.

Herriges, J.A., Kling, C.L., 1996. Testing the consistency of nested logit models with
utility maximization. Economics Letters 50, 33–39.

Konning, R.H., Ridder, G., 1993. On the compatibility of nested logit models with
utility maximization: a comment. Journal of Econometrics 63, 389–396.

Konning, R.H., Ridder, G., 2003. Discrete choice and stochastic utility maximization.
Econometrics Journal 43 (6), 1–27.

McFadden, D., 1978a. Quantitative methods for analyzing travel behaviour of
individuals: some recent developments. In: Behavioural Travel Modelling.
Croom Helm, London, pp. 279–318. (Chapter 13).

McFadden, D., 1978b. Modeling the choice of residential location. In: Spatial
Interaction Theory and Residential Location. North-Holland, Amsterdam,
pp. 75–96. (Chapter).

McFadden, D., 1981. Econometric models of probabilistic choice. In: Structural
Analysis of Discrete Data with Econometric Applications. MIT, Cambridge,
pp. 198–272. (Chapter).

Melo, E., 2011. Price competition, free entry, and welfare in congested markets.
Working Paper.

Verboven, F., 1996. Thenested logit and representative consumer theory. Economics
Letters 50 (1), 57–63.


