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Abstract
A stochastic model describing the learning process and
adaptive behavior of finitely many users in a congested traf-
fic network with parallel links is used to prove convergence
almost surely toward an efficient equilibrium for a related
game. To prove this result, we assume that the social plan-
ner charges on every route the marginal cost pricing with-
out knowing what is the efficient equilibrium. The result
is a dynamic version of Pigou’s solution, where the imple-
mentation is made in a decentralized way and the informa-
tion about players gathered by the social planner is minimal.
Our result and setting may be extended to the general case
of negative externalities.

1. Introduction

Congestion in traffic networks is the classical problem of negative exter-
nalities, which is generated due to selfish routing of players. To solve this
problem—in order to improve the general performance of the network—an
economic solution was given in Pigou (1920), which is known as the Pigou-
vian solution for negative externalities. Pigou’s solution consists in charging
a toll on every route so that each player pays exactly the externality gener-
ated by its presence (in the specific route) to the other players. Once that
this solution is implemented the players must consider in their choices two
sources of cost: the cost due to delay in the route and the cost due to toll.
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This idea was called as marginal cost pricing and an early formalization of this
one was given in Beckmann, McGuire, and Winstein (1956), where the main
result says that if a social planner implements a tolls system such that the
players pay exactly for the externalities that they create and if the cost func-
tions are convex and increasing, then an “optimal solution”—from a social
viewpoint—is reached. Despite being an effective mechanism to induce an
efficient equilibrium, the efficacy of Pigou’s principle rests on the assump-
tion that the social planner knows in a precisely way that is the efficient equi-
librium and according to this, he can calculate the tolls necessaries to attain
that state. However, this assumption implies that the social planner has in-
formation about players, mainly respect to their preferences, without speci-
fying how this is acquired. Behind these observations is the fact that Pigou’s
principle is thought as a equilibrium concept, omitting how this one may be
attained. Two papers that consider dynamical processes to explain how and
when the equilibrium may be reached, when the Pigouvian solution is used,
are Sandholm (2005) and Sandholm (2007). Sandholm’s results are built us-
ing evolutionary game theory at an aggregate population level in Sandholm
(2005) and for individual players in Sandholm (2007). The main result of
both papers is that if the social planner uses marginal cost pricing to correct
the externalities, then the game converges toward an efficient Nash equi-
librium. These results are based on the concept of potential games, which
was first introduced in Rosenthal (1973) and later generalized in Monderer
and Shapley (1996) and Sandholm (2001). Even though these papers prove
convergence toward an efficient equilibrium, the dynamics used are postu-
lated based on arguments of myopic behavior, which permit to get a general
process of adjustment used by players. On the other hand, a simple proce-
dure of learning used by individual players is considered in Marden et al.
(2009), which is applied to congestion games in order to analyze the conver-
gence toward the set of Nash equilibria when players’ payoffs are modified
by marginal cost pricing. The main characteristic of this procedure is that
players only observe their own payoff obtained from the alternative chosen,
that is, from the alternatives they experiment. This way of adjustment is in-
spired in ideas from Foster and Young (2006), and it is worth noting that
this learning rule needs to assume that there exist an exogenous rate of ex-
perimentation that permits that all players can know the performance of all
alternatives. Besides, the procedure works for a specific class of games called
weakly better reply, where potential games belongs to this one. The main result
given in Marden et al. (2009) is that in the long run, it is possible to stay in
a Nash (efficient) equilibrium with a probability near to 1. Although the re-
sult just described is appealing, the learning procedure and its assumptions
may still be considered as too restrictive in the context of traffic games with
finitely many users.

In this paper, an alternative learning procedure is considered. In
particular, we use the payoff-based learning procedure proposed in
Cominetti, Melo, and Sorin (2010) to prove convergence toward an efficient
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equilibrium in the context of traffic games. This learning rule works in the
following way: each player has a prior perception or estimate of the average
payoff of alternative routes at network and makes an “optimal” decision based
on this rough information by using a Logit choice rule. On this setting, we
consider a social planner who modifies players’ payoffs through marginal
cost pricing, which is the economic mechanism used by this planner to reach an
efficient equilibrium. Considering this fact, the payoff of the chosen alterna-
tive is then observed and is used to update the perception for that particular
route. This procedure is repeated day after day, generating a discrete time
stochastic process that we call the learning process. The basic ingredients are
therefore: a state parameter; a decision rule from states to (mixed) actions;
and an updating rule on the state space. Although players observe only the
payoff of the specific route chosen on any given day, the observed values de-
pend on the congestion levels determined by everybody else’s choices reveal-
ing implicit information on the system as a whole. Furthermore, in the set-
ting just described, the planner only needs to know the form of marginal cost
pricing and the natural question is whether under such a simple learning
mechanism based on a minimal piece of information may be sufficient to in-
duce coordination and make the system stabilize to an efficient equilibrium.

It is necessary to make two important remarks about our paper. The first
remark is about the type of learning rule that we will use. We note that our
learning rule is similar to the reinforcement model . In fact, we use a learning
procedure that preserves the qualitative features of probabilistic choice and
sluggish adaptation (see Section 2 in Young 2004 for details). Despite this
initial similarity, our learning process induces a specific dynamics on per-
ceptions and strategies that appear to be structurally different from the pre-
viously studied ones (see the discussion in Cominetti, Melo, and Sorin 2010
and references therein). The second remark is about the contribution of
our paper, which is mainly methodological, showing that a unified treat-
ment is possible in which a learning process, marginal cost pricing, and a
corresponding notion of equilibrium can be considered in a unified and
self-consistent way, where the efficient solution may be implemented in a de-
centralized way by the social planner. A remarkable property of this result
is that the social planner needs to gather a minimal piece of information
about the game, which is appealing in the context of the traffic games with
finitely many players. In addition, in this paper, we prove our convergence
result using a different Lyapunov function that turns out to be different to
the functional used by Cominetti, Melo, and Sorin (2010).

The paper is organized as follows. Section 2 describes the learning pro-
cess in the setting of traffic games considering a social planner that modifies
the payoffs through marginal cost pricing. Section 3 is dedicated to prove
global convergence of the learning rule, where this result is based on the
fact that the social planner’s objective function is a potential for players’ pay-
offs vector. Furthermore, we establish the link between the rest point of the
learning process and the Nash equilibrium for a related game. In addition,
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in Section 3, we study the symmetric players case and results of local conver-
gence are given. Finally, in Section 4, final comments and additional exten-
sions are considered.

2. Congestion Pricing and Payoff-Based Adaptive Dynamics

The setting for the traffic game is as follows. Each day a set of N players, i ∈ P ,
choose one among M alternative routes from a set R. The combined choices
of all players determine the total route loads and the corresponding travel
times. Each player experiences only the cost of the route chosen on that day
and uses this information to adjust the perception for that particular route,
affecting the mixed strategy to be played in the next stage.

More precisely, a route r ∈ R is characterized by an increasing and con-
vex function cr

u that represents the average travel time of the route when
it carries a load of u users, and, according to this, the congestion is cap-
tured by the following inequality cr

1 ≤ · · · ≤ cr
N . The set of pure strategies

for each player i ∈ P is Si = R and we denote �i as the set of mixed strate-
gies over Si , where we set � = ∏

i∈P �i . Let Gi(·) the payoff function for
player i and if r j

n ∈ R denotes the route chosen by each player j at stage n,
then player i’s payoff is given as the negative of the experienced travel time
gi

n = Gi (rn) = −cr
u with r = r i

n and u = #{ j ∈P : r j
n = r }.

We assume that the route r i
n is randomly chosen by player i according to

a mixed strategy π i
n = σ i (xi

n) ∈ �i , which depends on a vector xi
n = (xir

n )r ∈R
that represents her perceptions about the payoffs of the routes available. In
particular, we use the Logit model with

σ ir (xi ) = exp(βi xir )∑
a∈R

exp(βi xia)
, (1)

where the parameter β i has a smoothing effect when β i↓0 leading to an uni-
form choice, while β i↑∞ the probability concentrates on the pure strategy
with the lower perception. As it is well known, in the traffic game just de-
scribed, players’ choices are made in a selfish way, that is, they do not incor-
porate the effect of their decisions over payoffs of other players, what implies
that Nash equilibria are inefficient. This selfish routing is in opposition with
the social planner’s objective, who desires to maximize the aggregate welfare
considering the choices of all players. In traffic games, this is equivalent to
minimize the total cost of the network. Formally, let H̄ : [0, 1]P×R → R be
defined as

H̄ (π) = − E

[∑
r ∈R

U r cr
U r

]
, (2)

with U r=∑
i∈P X ir , where X ir are independent nonhomogeneous Bernoulli’s

random variables with parameters P(X ir =1)=π ir .
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In order to maximize (2), the planner charges a toll on every route,
which is given by

p r
u = (u − 1)

(
cr

u − cr
u−1

) ∀r ∈ R, (3)

where p r
u is the toll charged at the route r when it carries a load of u users.

The expression (3) is a dynamic version of the classical solution of
marginal cost pricing to correct the negative externalities generated by self-
ish routing of independent and noncooperative players.

This tolls system modifies the payoffs for players, so at the stage n these
are given by g̃ i

n = G̃ i (rn) = Gi (rn) − p r
u = −c̃ r

u for every r ∈ R, where c̃ r
u =

cr
u + p r

u. As cr
u is increasing and convex, it is easy to see that the inequality

c̃ r
1 ≤ c̃ r

2 · · · · · · ≤ c̃ r
N holds.

It is important to note that under (3) players pay for the externalities
they currently create. The reason of this fact is due to that the social planner
does not know what is the efficient equilibrium and consequently he is not
able to know what tolls should be charged to attain this result. Moreover, we
remark that the tolls system given by (3) is anonymous in the sense this one
does not depend on players’ identity.

Considering the previous setting and following to Cominetti, Melo, and
Sorin (2010), we introduce the learning process as follows. At the stage n,
the perceptions xir

n determine the choice probabilities π ir
n = σ ir (xi

n) that are
used by each player i to select a random route r i

n ∈ R. These choices deter-
mine the load ur

n of route r as the total (random) number of users i such
that r i

n = r . The payoff of route r is then given by g̃ i
n = −c̃ r

u with u = ur
n. At

the end of the stage n, each player i observes only the cost of the chosen
alternative r i

n and updates his/her perceptions by averaging

xir
n+1 =

{
(1 − γn)xir

n + γng̃ i
n if r i

n = r

xir
n otherwise,

where γ n ∈ (0, 1) is a sequence of averaging factors with
∑

nγ n = ∞ and∑
n γ 2

n < ∞ (a typical choice is γn = 1
n). Schematically, the procedure just

described looks like

xir
n � π ir

n � r i
n � ur

n � g̃ i
n � xir

n+1,

which yields a discrete time stochastic process that represents the evolution
of player perceptions where the perceptions of pure strategies not played at
that stage remain unchanged. We call this the learning process and we rewrite
it in condensed form as

xn+1 − xn = γn[wn − xn] (4)

w ir
n =

{
g̃ i

n if r i
n = r

xir
n otherwise.

(5)
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An interesting characteristic of this learning process is that the informa-
tion gathered at every stage by each player is very limited—because only the
payoff of the movement realized is known—so the main question we address
is whether an iterative procedure based on such a minimal piece of informa-
tion can lead to coordination among the players on a steady state and how
this one can be related with the social planner problem’s given by (2).

Process (4) has the form of a stochastic algorithm (see Benaim 1999,
Benaim, Hofbauer, and Sorin 2005) with the distribution of the random vec-
tor wn being determined by the individual Logit rules that depend upon
the prior perceptions xn. We remark that since the route costs are bounded,
the same holds for the sequences generated by (4). Hence, the asymptotic
behavior of (4) can be studied by analyzing the continuous dynamics1 of the
expected movement, that is to say

dx
dt

= E(w | x) − x. (6)

In order to make this equation more explicit we remark that if π ir =P(X ir =
1), then we can define the quantity

F
ir

(π) = E
[− c̃ r

U r

∣∣ X ir = 1
] = E

[−(
cr

U r
i +1 + p r

U r
i +1

)]
, (7)

with U r
i = ∑

k 
=i X kr . The expression (7) represents the average cost ob-
served by user i when he chooses route r and the other users choose it with
probabilities π jr for j ∈ P, j 
= i . Notice that F̄ ir (π) is a function of the prob-
abilities (π jr )j 
=i only and does not depend on the probabilities with which
the users choose the other arcs. Furthermore, we introduce the space of per-
ceptions � = ∏

i∈P R
R and the map C̄ : � → � that express the vector payoff

as a function of the state given by

C̄ ir (x) = F̄ ir (�(x)), (8)

where the Logit model is incorporated through the map �: � → � defined
as

�(x) = (σ i (xi ))i∈P , (9)

where the latter represents the profile of mixed strategies at the state x and
F : � → � is the vector payoff function defined on the strategy space by
F (π) = (F

i
(π))i∈P .

LEMMA 1: Setting U r
i j = ∑

k 
=i, j X kr , we have

F
ir

(π) = E
(−cr

U r
i +1

) +
∑
j 
=i

σ j r (x j )E
(−�cr

U r
i j +2

)
.

1 See Appendix for details.



Learning in Network Games 357

Proof : As E(−(cr
U r

i +1 + p r
U r

i +1)) = E(−cr
U r

i +1) + E(−p r
U r

i +1), we note that
E(−p r

U r
i +1) can be written as follows

E
(−p r

U r
i +1

) = E
(−U r

i

(
cr

U r
i +1 − cr

U r
i

))
.

= E

⎛⎝−
∑
j 
=i

X jr �cr
U r

i +1

⎞⎠ .

As
∑

j 
=iX jr is the summation of independents nonhomogenous
Bernoulli’s random variables and using conditional expectation for
all j 
= i, the preceding expression can be expressed as

∑
j 
=i σ j r (x j )

E(−�cr
U r

i j +2). �

PROPOSITION 1: The continuous dynamics (6) may be expressed as

dx
dt

ir

= σ ir (xi )[C
ir

(x) − xir ], (10)

with C
ir

(x) = E(−cr
U r

i +1) + ∑
j 
=i σ j r (x j )E(−�cr

U r
i j +2).

Proof : Taking (5) into account, the expected value E(w | x) is given by

E(w ir | x) = σ ir (xi )C
ir

(x) + (1 − σ ir (xi ))xir

E(w ir | x) − xir = σ ir (xi )[C
ir

(x) − xir ],

which plugged into (6) and using Lemma 1 we get (10). �

We shall refer to the system of differential Equation (10) as the adaptive
dynamics. As we have noted, the learning process and adaptive dynamics have
been proposed in Cominetti, Melo, and Sorin (2010), and a distinguishing
feature with respect to previous work in this area is that the dynamics are not
directly postulated as a mechanism of adaptive behavior, but they emerge
instead as a consequence of the learning process. Besides, we observe that
C

ir
(x) does not depend on player i’s perceptions xi but it incorporates the

congestion induced by all the other players.

3. Global Convergence of the Learning Process

In the traffic game setting just described, the vector payoff map F̄ (·) given by
(7) may also be expressed as the gradient of a potential function. As it is well
known, the traffic game is also a potential game in the sense of Monderer
and Shapley (1996). However, the notion of potential that we used is closer
to the one introduced in Sandholm (2001). An interesting fact is that our
potential function is given by H̄ (·).
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PROPOSITION 2: F̄ (π) = ∇H̄ (π) for all π ∈ �.

Proof : We note that H̄ (π) = −∑
r ∈R E[U r cr

U r ] and conditioning over the
variables {X ir }r ∈R we get

H̄ (π) = −
∑
r ∈R

[
π ir

E
((

U r
i + 1

)
cr

U r
i +1

) + (1 − π ir ) E
(
U r

i c r
U r

i

)]
,

which combined with (7) yields

∂H̄
∂π ir

(π) = −E
[(

U r
i + 1

)
cr

U r
i +1

] + E
[
U r

i c r
U r

i

]
= E

[−(
cr

U r
i +1 + p r

U r
i +1

)] = F̄ ir (π). �

To study convergence of the learning process, we need some Lipschitz
estimates, which can be obtained directly from Proposition 1. The following
results are expressed in terms of a parameter that measures the congestion
induced by an additional player, namely

δ = max
{
cr

u − cr
u−1 : r ∈ R; u = 2, . . . , N

}
. (11)

LEMMA 2: The second derivatives of H̄ are all zero except for

∂2H̄
∂π j r ∂πir

(π) = 2E
[
cr

U r
ij +1 − cr

U r
ij +2

] ∈ [−2δ, 0], (12)

with j 
= i, where U r
ij = ∑

k 
=i, j X kr .

Proof : We have noted that ∂H̄
∂π ir(π) =E[−(cr

U r
i +1 + p r

U r
i +1)] depends only on

(π kr )k 
=i . Then using Lemma 1 and conditioning on X jr we get

∂H̄
∂π ir

(π) = π j r
E

[−cr
U r

ij +2

] + (1 − π j r )E
[−cr

U r
ij +1

] +
∑
k 
=i

π kr
E

(−�cr
U r

ik+2

)
.

Taking partial derivative respect to π jr the result follows at once. �

LEMMA 3: ‖∇π ir (xi )‖1 ≤ 1
2βi for all i ∈ P and xi ∈ R

R.

Proof : It suffices to note that ∂π ir

∂xia = βiπ
ir (δar − π ia) with δar equal to 1 if

a = r and 0 otherwise, from which we get

‖∇π ir (xi )‖1 = βiπ
ir
∑
a∈R

| δar − π ia | = 2βiπ
ir (1 − π ir ) ≤ 1

2
βi . �



Learning in Network Games 359

Defining ω = maxi∈P
∑

j 
=i β j , we get the following Corollary.

COROLLARY 1: For all x, y ∈ �, we have

‖C̄(x) − C̄(y)‖∞ ≤ ωδ‖x − y‖∞. (13)

Proof : We note that for every i ∈ P and r ∈ R Equation (8) and Lemma
2 combined yield |C̄ ir (x) − C̄ ir (y)| = | ∂H̄

∂π ir (�(x)) − ∂H̄
∂π ir (�(y))| ≤ 2δ∑

j 
=i |σ j r (x j ) − σ j r (y j )|, so using Lemma 3 we conclude. �

We are ready to state our main theorem concerning the asymptotic con-
vergence of the learning process (4) and the adaptive dynamics (10).

THEOREM 1: Assume in the traffic game that ωδ < 1. Then, the corresponding
adaptive dynamics (10) has a unique rest point x̄ that is a global attractor and the
process (4) converges almost surely to x̄.

Proof : Note that if ωδ < 1 by the Corollary 1 the existence and uniqueness of
x̄ is assured, while almost sure convergence of (4) follows from global at-
traction and well-known results in stochastic approximation (cf. Benaim
1999). Hence, it suffices to show that x̄ is an attractor by exhibiting a
strict Lyapunov function with a unique minimum at x̄. The next Lemma
describes a such function. We shall use the fact that a finite maximum
of smooth functions ϕ(t) = max {ϕj(t): j ∈ J } is absolutely continuous
with derivative ϕ̇(t) = max{ϕ̇ j (t) : j ∈ J (t)} where J (t) is the set of j’s at
which the max is attained. �

LEMMA 4: If ωδ < 1 then (x)=maxir |ẋ ir | is a Lyapunov function for (10)
and x̄ is a global attractor .

Proof : Let ir be an index where the max is attained and assume first ẋ ir > 0
(recall that ẋ = dx

dt ). Using the equality ∂π ir

∂xia = βiπ
ir (δar − π ia) one gets

π̇ ir = βiπ
ir

[
ẋ ir −

∑
a∈R

π ia ẋ ia

]
≤ 0,

while (12) gives d
dt [C̄ ir (x(t))] ≤ η (x) with η = ωδ < 1 so that

d
dt

[ẋ ir ] = π̇ ir [C̄ ir (x) − xir ] + π ir d
dt

[C̄ ir (x) − xir ]

≤ π ir [η − 1] (x).

A similar analysis holds for the case ẋ ir < 0 so we deduce
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d
dt

(x) ≤ − min
ir

π ir [1 − η] (x).

Now, since C̄ ir (x) ∈ [−c̃ r
N ,−c̃ r

1] it follows easily from (10) that x(t) re-
mains bounded and therefore π ir stays away from 0 so that d

dt (x(t)) ≤
−ε (x(t)) for some ε > 0. This implies that  is a Lyapunov function
that decreases to 0 exponentially fast along the trajectories of (10), and
since x̄ is the unique point with (x̄) = 0 the conclusion follows. �

It is important to make some remarks about our convergence result.
First, Theorem 1 establishes global convergence of the learning process with-
out considering the existence of a related game. As a matter of fact, to derive
the dynamic (10), we do not need to assume that players know that they
are involved in a game. Moreover, players do not need to gather informa-
tion about actions or payoff functions of other players. However, in the next
section, we shall establish the link between the rest points of (10) and Nash
equilibrium for a related game. A second remark is about the condition of
convergence, where we note that in traffic games a standard assumption is
that an individual player has a negligible effect on the payoff of a specific
route, what in our model is captured by a small parameter δ. Thus, our condi-
tion ωδ < 1 can be considered as suitable in the context of traffic games with
finitely many players. Likewise, the condition ωδ < 1 can be strengthen to the
class of random utility models satisfying the gradient condition ‖∇π ir (xi)‖1
≤ Ki , with Ki > 0 for all i ∈ P and xi ∈ R

R, where for the Logit choice rule
this condition is given by Lemma 4. This point is important because we are
not constrained to consider homogeneous choice rules for players. Finally,
we must mention that an alternative proof of Theorem 1 can be given using
our Corollary 2 combined with Theorem 2 in Cominetti, Melo, and Sorin
(2010).2

3.1. Rest Points and Nash Equilibrium

From general results on stochastic algorithms, we know that the rest points
of the continuous dynamics (10) are natural candidates to be limit points
for the stochastic process (4). Since σ ir (xi ) > 0 ∀r ∈ R, these rest points are
the fixed points of the map x → C̄(x) whose existence follows easily from
Brouwer’s Theorem if one notes that this map is continuous with bounded
range. We denote E as the set of rest points for (10). As was noted in
Cominetti, Melo, and Sorin (2010), there is a correspondence one-to-one be-
tween rest points and the associated π ’s that can be associated with the con-
cept of quantal response equilibria introduced in McKelvey and Palfrey (1995).
Formally, we get

2 In particular, Theorem 2 in Cominetti, Melo, and Sorin (2010) provides a convergence
result for a general class of games.
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PROPOSITION 3: The map x −→ �(x) is oné-to-one over the set E .

Proof : The proof is straightforward if we note that the fixed point equation
x = C̄(x) can be restated as a coupled system in (x, π){

π = �(x)

x = F̄ (π).

Then for x ∈ E the map, x −→ �(x) has an inverse image given by
π −→ F̄ (π). �
We use Proposition 2 to establish a link between the set E and the

Nash equilibrium for a related N -person game G defined by strategy sets
Si = �(R) for all i ∈ P and payoff function G :

⊗
i∈P Si → R

N given by

Gi (π) = 〈π i , F̄ i (π)〉 − 1
βi

∑
r ∈R

π ir [ln π ir − 1],

which is a congestion game perturbed by an entropy term.

THEOREM 2: Consider ωδ < 1. Then, π = �(E) is the Nash equilibrium of the
perturbed game G. Moreover, this equilibrium is unique.

Proof : By Proposition 3 in Cominetti, Melo, and Sorin (2010), we know that
�(E) is the set of Nash equilibria for G. Furthermore, if ωδ < 1, by The-
orem 1 we get E = {x̄}. Finally, as we just noted, there exists a corre-
spondence one-to-one between rest point x̄ and the associated π , so the
uniqueness of Nash equilibrium for G it follows. �
The Theorem 3 says that at the Nash equilibrium each player considers

the effect that his/her decision has upon payoffs of other players. To reach
this result, the planner only needs to charge the current tolls that are given
by (3). Furthermore, it is worth noting that the efficient result is attained in
a decentralized way, where the planner does not need to take into account
players’ identity.

Remark 1: Payoff-based learning rules have been proposed in Marden and
Shamma (2009) and Young (2009). However, their results differ with our
approach in two important aspects. First, the cited papers study payoff-
based learning exploiting the theory of perturbed Markov chains (in dis-
crete time), which turns out to be structurally different to our approach
based on stochastic approximation. In particular, Marden and Shamma
(2009) and Young (2009) study the stochastically stable sets for the per-
turbed Markov process induced by their learning rules, whereas we study
the rest points for the continuous and deterministic dynamics given by
(10). The second difference is about the application of our learning
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rule in congestion games. We note the models proposed in Marden and
Shamma (2009) and Young (2009) can also be applied to traffic games;
however, in our results, we provide an explicit condition depending on
the parameter δ. This condition is appealing because our model shows
how the negligible effect assumption in the context of traffic games is
fundamental to attain convergence.

3.2. The Symmetric Case

In this section, we assume βi ≡ β ∀i ∈ P and according to this (1) is given by
a common Logit function that we denote as σ(·). Under this assumption is
reasonable to expect that a rest point is a situation where all players share
the same perceptions, i.e. : xi = x j for all i, j ∈ P . In fact, when βδ is small,
then only and only one rest point is symmetric.

LEMMA 5: For all x, y ∈ �, each i, j ∈ P and every r ∈ R, we have

|C̄ ir (x) − C̄ jr (x)| ≤ βδ ‖xi − x j‖∞. (14)

Proof : We observe that the only difference between F̄ ir and F̄ jr is an
exchange of π ir and π jr . Besides, by Lemma 1, we know F̄ ir (π) =
E(−cr

U r
i +1) + ∑

k 
=i σ r (xk)E(−�cr
U r

ik+2). Thus, Proposition 4 and
Lemma 4 combined imply that | F̄ ir (π) − F̄ jr (π) | ≤ 2δ | π ir − π j r |
and then (14) follows from the equality C(x) = F (�(x)) and Lemma 5.
�

The existence and uniqueness of a symmetric rest point has been es-
tablished in Cominetti, Melo, and Sorin (2010). The following proposition
establishes the symmetry of a rest point for (10) when βδ < 1.

PROPOSITION 4: Let β i ≡ β for all i ∈ P . If βδ < 1 then every rest point of
(10) is symmetric and unique.

Proof : As we just noted the existence and uniqueness of a symmetric rest
point it follows from Theorem 3 in Cominetti, Melo, and Sorin (2010).
To prove symmetry consider us that βδ < 1 and let x be any rest point.
For any two players i, j ∈ P and all routes r ∈ R, Lemma 5 gives

|xir − x jr | = |C̄ ir (x) − C̄ jr (x)| ≤ βδ‖xi − x j ‖∞

and then ‖xi − xj‖∞ ≤ βδ‖xi − xj‖∞ that implies xi = xj . �

COROLLARY 2: If β i ≡ β for all i ∈ P then the game G has a unique symmetric
equilibrium. Moreover, if βδ < 1 then every equilibrium is symmetric (hence unique).
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It is interesting to note that in the symmetric case the condition of sta-
bility of rest points given in Theorem 1 becomes in βδ < 1

N −1 , which is more
and more exigent as the number of players increase. However, we can obtain
a local result which only depends on βδ < 1. In fact, this result is a slight
variation of the Theorem 3 in Cominetti, Melo, and Sorin (2010).

THEOREM 3: If β i ≡ β for all i ∈ P with βδ < 1 then the unique rest point
x̂ = ( ŷ , . . . , ŷ) is symmetric and a local attractor for the adaptive dynamics (10).

Proof : See proof of Theorem 3 in Cominetti, Melo, and Sorin (2010) and
considering βδ < 1 instead of βδ < 2. �

4. Comments and Final Remarks

Two important remarks can be made for the specific model here consid-
ered. The first remark is based on the observation made in Cole, Dodis, and
Roughgarden (2006) about the possibility of considering an alternative tolls
scheme that is not based on marginal cost pricing. The argument to con-
sider an alternative tolls scheme is because if the social planner has a ob-
jective function as (2), then the disutility for players generated by marginal
cost pricing is not considered (for details see 3 in Cole, Dodis, and Rough-
garden 2006). This observation implies the study different forms of pricing
that could be better than marginal cost pricing. We can adapt our model to
analyze this issue. In fact, let us consider a nondecreasing function p r

u that
represents the toll to be charged when route r ∈ R carries a load of u play-
ers with p r

1 ≤ · · · ≤ p r
N . So, this tolls system implies that players’ payoffs at the

stage n are given by g̃ i
n = G̃ i (rn) = Gi (rn) − p r

u = −c̃ r
u, for all r ∈ R, where

it follows c̃ r
1 ≤ · · · ≤ c̃ r

N . Under this tolls scheme, the result in Proposition 1
does not hold any longer. However, we can recover the convergence results if
we define the function given by: H (π) = −E(

∑
r ∈R

∑U r

u=1 c̃ r
u). This function

is a potential for F̄ (·), namely, ∇H (π) = F̄ (π)∀π ∈ �, where the argument
to prove it is the same one used in the proof of Proposition 1. Although we
cannot relate this potential function with social planner’s problem, this re-
sult permits to attain convergence of the learning process for the case of a
general nondecreasing function p r

u. In terms of Cole, Dodis, and Roughgar-
den (2006), we may study the case when the social planner has the objective
function: H̃ (π) = −E(

∑
r ∈R U r c̃ r

U r ) = −E(
∑

r ∈R U r (cr
U r + p r

U r )), that is, the
case when the planner considers both the disutility due to delay and the disu-
tility generated by tolls.

The second remark is about the case when each player has private val-
uations for every route. More precisely, let us consider the following payoff
function: Gi (rn) = νir − cr

u for all i ∈ P, r ∈ R, where the parameter ν ir rep-
resents player i’s valuation for using route r , so it varies among players and
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routes.3 Under this setting for payoffs, the adaptive dynamics (10) is the same
and (2) is still a potential function for F̄ (·). Thus, the results of convergence
are invariant.

Finally, an interesting extension of our results would be to study the case
when each route is owned by a monopolist that must charge prices in an
optimal way (in order to maximize its profit). This issue raises the question
about how players and a monopolist could learn simultaneously and how the
equilibrium would be attained.

Appendix: Stochastic Approximation

In this appendix, we briefly revise the theory of stochastic approximation.
Our review is based on Benaim (1999).

The following definition establishes what it is understood by stochastic
algorithm.

DEFINITION 1: Let {xn}n∈N be a discrete time process living in R
m . We say that

this process is a stochastic algorithm if it can be written as:

xn+1 − xn = γn+1(F (xn) + Un+1), (A1)

where

• F : R
m −→ R

m is a continuous map.
• {γ n}n≥1 is a given sequence of nonnegative numbers such that∑

k

γk = ∞ y lim
n−→∞ γn = 0.

• Un ∈ R
m are (deterministic or random) perturbations.

Intuitively, the idea of stochastic approximation is to compare the be-
havior of a sample path {xn}n∈N with the trajectories induced (in continuous
time) by the vector field F .

In particular, the vector field F is said to be globally integrable if it has
unique integral curves. A well-known example is the case when F is a locally
Lipschitz vector field, which is always globally integrable. The following result
is fundamental in the theory of stochastic approximation.

PROPOSITION 5 (Benaim 1999): Let F be a continuous globally integrable vec-
tor field. Assume that:

3 This framework has been considered by Miltaich (2004) in the context of congestion
games with a continuum of players.
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A1 For all T > 0

lim
n−→∞ sup

k

{∥∥∥∥∥
k−1∑
i=n

γi+1Ui+1

∥∥∥∥∥ : k = n + 1, . . . . . . , m(τn + T)

}
= 0

or equivalently

lim
t−→∞ �(t, T) = 0

with

�(t, T) = sup
0≤h≤T

∥∥∥∥∫ t+h

t
Ū (s)ds

∥∥∥∥ (A2)

A2 supn ‖xn‖ < ∞ , or

A2’ F is Lipschitz and bounded on a neighborhood of {xn: n ≥ 0}.

Then, the interpolated process X is an asymptotic pseudo trajectory for the flow
 induced by F . Furthermore, under the assumption A2’, for t ≥ 0 large enough we
have the estimate

sup
0≤h≤T

‖X (t + h) − h(X (t))‖ ≤ C(T)[�(t − 1, T + 1) + sup
t ≤ s ≤ t + T

(γ̄ (s))],
(A3)

where C(T) is a constant depending only on T and F .

Proof : See Benaim (1999) pp. 13–14. �

Because of this result, we can study the discrete time process (15) using
the following dynamical system

ẋ = F (x). (A4)

The powerful of this approach is given by the fact we can study all con-
vergence properties of (15) using (18), which in some cases turn out to be
easier. In applications of Proposition 5, when Un is random, one usually tries
to verify assumption A1 holds with probability 1. Formally, in the stochastic
case, we have the following definition:

DEFINITION 2: Let {�,F , P} be a probability space and Fn a nondecreasing se-
quence of σ -algebras of F . We say that a stochastic process {xn}n∈N given by
(15), satisfies the Robbins-Monro conditions if:

• {γn}n∈N is a deterministic sequence.
• {Un}n∈N is adapted: Un is measurable with respect to Fn for each n ≥ 0
• E(Un+1 |Fn) = 0
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PROPOSITION 6 (Benaim 1999): Let {xn}n∈N given by (15) be a Robbins-Monro
algorithm. Suppose that for some q ≥ 2 such that

sup
n

E(‖Un+1‖q ) < ∞

and ∑
n

γ 1+q/2
n < ∞.

Then, the assumption A1 of Proposition 6 holds with probability 1.

The previous Proposition allow us to study the learning process (4) using
its deterministic and continuous time version.
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