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In this paper we study the problem of price competition and free entry in congested
markets. In particular, we consider a network with multiple origins and a common
destination node, where each link is owned by a firm that sets prices in order to maximize
profits, whereas users want to minimize the total cost they face, which is given by the
congestion cost plus the prices set by firms. In this environment, we introduce the notion
of Markovian Traffic Equilibrium to establish the existence and uniqueness of a pure strategy
price equilibrium, without assuming that the demand functions are concave nor imposing
particular functional forms for the latency functions. We derive explicit conditions to
guarantee existence and uniqueness of equilibria. Given this existence and uniqueness
result, we apply our framework to study entry decisions and welfare, and establish that
in congested markets with free entry, the number of firms exceeds the social optimum.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In many environments, such as communication networks in which network flows are allocated, or transportation net-
works in which traffic is directed through the underlying road architecture, congestion plays an important role in terms of
efficiency. In fact, over the last decade the phenomenon of congestion in traffic networks has received attention in a number
of different disciplines: economics, computer science, and operations research.

The main question is how to achieve a socially optimal outcome, which is intimately linked to the assessment of conges-
tion effects. This feeds into the identification of socially optimal regulatory actions in such markets. Indeed, a social planner
may use a sort of economic mechanisms in order to induce users’ behavior toward the socially optimal outcome. In fact,
since the seminal work of Pigou (1920), it is well known that an efficient outcome in a network subject to congestion can
be reached through the centralized implementation of a toll scheme based on the principle of marginal cost pricing. Under this
mechanism users pay for the negative externality that they impose on everybody else.

Concretely, under a Pigouvian tax scheme users face two sources of cost: one due to the congestion cost and the second
due to the toll. Nonetheless, Pigou’s solution is hard to implement in practice, because it requires that the social planner
charges the tolls in a centralized way, which from a practical and computational perspective is a very complex task. Thus,
the natural alternative is to consider a market-based solution, where every route (or link) of the network is owned by
independent firms who compete setting prices in order to maximize profits.1

1 For an early discussion of price mechanisms in congested networks, we refer the reader to Luski (1976), Levhari and Luski (1978), Reitman (1991), and
MacKie-Mason and Varian (1995).
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Despite the relevance of and the increasing interest in implementing decentralized pricing mechanisms to reduce and
control congestion in networks, little is known about the theoretical properties of such solutions for general class of network
topologies. Indeed, little is known about the existence and uniqueness of equilibrium prices for general classes of network
topologies.

In addition to the problem of the existence and uniqueness of a price equilibrium, a second problem that is raised in
congested markets is the analysis of free entry and welfare. In particular, every firm can be viewed as a link, so the number
of firms that enter the market will determine the network topology. Thus the socially optimal topology can be identified
with the optimal number of firms in the market. Similarly to the study of existence and uniqueness of a price equilibrium,
little is known about the free entry problem in general networks.

1.1. Our contribution

In this paper we develop and study a general oligopoly model in a network subject to congestion effects. Our contribution
is threefold. First, we study oligopoly pricing in congested networks exploiting an alternative notion of equilibrium in traffic
networks, which we denote as Markovian Traffic Equilibrium. Our equilibrium concept is based on the idea that users choose
their optimal paths in a recursive way. The idea that users can find their optimal paths in a recursive way turns out to be
different to the standard notion of Wardrop equilibria. In particular, our equilibrium concept allows for heterogeneous users
and general network topologies.2 We are not aware of previous papers studying price competition in congested markets
using the notion of Markovian Traffic Equilibrium.

Second, we show the existence and uniqueness of a pure strategy price equilibrium. Our result is general: we do not
assume that demand functions are concave nor impose particular functional forms for the latency functions (congestion
costs) as is commonly assumed in the extant literature. We derive explicit conditions to guarantee existence and uniqueness
of equilibria. We stress that our existence and uniqueness result does not rely on a specific network topology. In fact, our
result applies to any directed acyclic network with multiple origins and a common destination node.

Our third contribution is the study of entry decisions and welfare in congested markets. We show that the number of
firms that enter the network exceeds the social optimum. In terms of network design the excess entry result means that
the observed topology will not be the socially optimal. Because we obtain this result for a general network, we think of that
our excess entry result may be useful in studying problems of optimal design of networks.

Formally, we study a network with multiple origins and a common destination node, where every link is owned by a firm
that sets prices in order to maximize profits. In this environment, users face two sources of cost: the congestion cost plus
the price set by the firms. The congestion in every link is captured by a latency function, which is strictly increasing in the
number of users utilizing it. In order to solve the users’ problem, we adapt the Markovian Traffic model proposed by Baillon
and Cominetti (2008), to the study of price competition in congested networks. This Markovian model is based on random
utility models and dynamic programming. The use of random utility models allows for heterogeneity in users’ behavior, i.e.,
instead of assuming homogeneous users, we model the utility of choosing a certain route as a random variable. In addition,
and considering the stochastic structure of users’ utilities, we assume that users solve a dynamic programming problem
in order to construct the optimal path in a recursive way. Thus, at each node users consider the utility derived from the
available links plus the continuation values associated to each link.

Furthermore, the introduction of random utility models has the advantage of generating a demand system, which shows
how prices and congestion externalities induce users’ choices.3

Combining the previous elements, we solve a complete information two stage game, which can be described as follows:
In the first stage, firms owning the links maximize profits setting competitive prices a là Bertrand. In the second stage,
given firms’ prices, users choose routes in order to maximize their utility, namely the cheapest route. We solve this game
using backward induction, looking for a pure strategy sub-game perfect Nash equilibrium, which we call the Oligopoly Price
Equilibrium.

Despite being a stylized model, an important real world situation where our framework may be useful is the case of road
pricing in transportation networks. In particular, in transportation networks commuters from different locations (sources)
want to travel to a common destination, let us say d. In order to reach the destination d, commuters must choose among
different paths, where the total cost faced by commuters is given by the price charged by firms (operators) plus congestion.
In real world transportation networks, the links of different paths are managed by different private operators, by local
governments, or by a mix of private and public operators.4 For example, the transportation network in Europe has received
attention because commuters must choose paths across different countries, where the prices are set by a mix of different

2 The assumptions of homogeneous users and very specific network topologies, like parallel serial link networks, have been recognized as one of the
main limitations of the previous studies of pricing in congested networks. For a survey of the different models of pricing in congested networks we refer
the reader to Nisan et al. (2007, Ch. 22).

3 We stress that our approach differs with the one known as aggregation in oligopoly markets proposed by Caplin and Nalebuff (1991). The main technical
difference is due to our demand system being defined in terms of a fixed point equation, which reflects the existence of congestion externalities in users’
choices, while the results in Caplin and Nalebuff (1991) do not apply to the case of demand systems with externalities (positive or negative).

4 For a detailed discussion of road pricing under different ownership schemes we refer the reader to Yang and Huang (2005) and Small and Verhoef
(2007, Ch. 6).
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public (government) and private operators.5 In this context, information about the conditions of existence and uniqueness of
a price equilibrium, and how the transportation network behaves under free entry provides useful information to regulators
who want to know the effect on welfare and congestion levels of different pricing policies, different ownership regimes,
investment in highways, and the effect of adding (or deleting) links on the network.6

1.2. Related work

The pricing game that we study in this paper is not new at all. In fact, this class of games is studied in Cachon and Harker
(2002), Engel et al. (2004), Hayrapetyan et al. (2005), Acemoglu and Ozdaglar (2007), Baake and Mitusch (2007), Allon and
Federgruen (2007, 2008), Chawla and Roughgarden (2008), and Weintraub et al. (2010). In order to establish the existence
of an oligopoly price equilibrium, these papers assume the following: First, in order to describe users’ behavior these papers
make use of the concept of Wardrop equilibria, which establishes that utilities (costs) on all the routes actually used are
equal, and greater (less) than those which would be experienced by a single user on any unused route. Second, these
papers impose assumptions on the demand generated by users’ behavior or assumptions on the class of latency functions.
In particular, Cachon and Harker (2002), Engel et al. (2004), Hayrapetyan et al. (2005), and Weintraub et al. (2010) assume
that the demand functions are concave (or log-concave) functions of the price charged by firms. Thanks to the concavity
assumption, the previous papers show the existence of an oligopoly price equilibrium. On the other hand, the papers of
Acemoglu and Ozdaglar (2007), Baake and Mitusch (2007), and Chawla and Roughgarden (2008) show the existence of a
pure strategy equilibrium assuming that the latency functions are affine.

Moreover, all of the papers mentioned above, consider a simple network consisting of a single origin–destination pair,
with a collection of parallel links. This specific network topology rules out some interesting examples from an applied point
of view,7 thus limiting the application of the available existence results.

The recent papers of Allon and Federgruen (2007, 2008), use random utility models to study price in competition in the
context of queuing games, where the latency functions represent the waiting time that users must wait to be served. These
papers establish the existence and uniqueness of an oligopoly equilibrium. However, the results in Allon and Federgruen
(2007, 2008) differ from ours in two important aspects. First, Allon and Federgruen (2007, 2008) consider a network con-
sisting of a single origin–destination pair with parallel links, thus ruling out important cases from an applied perspective.
Second, Allon and Federgruen (2007, 2008) do not study the entry and welfare problem.

Regarding our result on free entry and welfare, similar findings in the context of traditional oligopoly theory can be found
in Mankiw and Whinston (1986) and Anderson et al. (1995). These papers do not, however, deal with network structures
on congestion; features that are crucial components of our result. For the case of congested networks, a similar result to
ours can be found in the recent paper of Weintraub et al. (2010) for the particular case of a network with a single pair
source–sink and assuming parallel links. Summarizing, our results can be viewed as a generalization of previous findings of
the free entry and welfare problem.

The rest of the paper is organized as follows: Section 2 presents the model. Section 3 studies the free entry and welfare
problem. Section 4 shows the result of existence and uniqueness of a oligopoly price equilibrium for a general class of
latency functions. Finally, Section 5 concludes. Proofs and technical lemmas are presented in Appendix A.

2. The model

Let G = (N, A) be a directed acyclic graph representing a traffic network, with N being the set of nodes and A the set
of links respectively. Let d ∈ N be the destination node (or sink). For each node i �= d, gi � 0 denotes the numbers of users
starting at that node. We interpret gi as a continuum of users. For all i �= d, we denote Ri as the set of available routes
connecting node i with the destination node d. Every link a is represented by a convex and strictly increasing continuous
latency function la : R �→ (0,∞), which we assume to be twice continuously differentiable.

A flow vector is a nonnegative vector v = (va)a∈A , where va � 0 denotes the mass of users using link a. Any flow vector
v must satisfy the flow conservation constraint:

gi +
∑

a∈A−
i

va =
∑

a∈A+
i

va, ∀i �= d, (1)

where A−
i denotes the set of links ending at node i, and A+

i denotes the set of links starting at node i. The set of feasible
flows is denoted by V .

5 In fact, De Borger et al. (2005, 2007) analyze the case of tax competition motivated by the European transportation network.
6 We note that in order to incorporate a public operator in our model, we need to modify the profit function that the public operator wants to maximize.

For a detailed discussion of profit functions for public operators we refer the reader to Small and Verhoef (2007, Ch. 6).
7 For instance, this specific topology rules out the case of hub-spoke networks.
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We introduce firms into the network through the assumption that each link a is operated by a different firm that sets
prices in order to maximize profits. In particular, firm a’s profits are given by:

πa(p, va) = pa va, ∀a ∈ A. (2)

Profit maximization generates a nonnegative price vector p, p = (pa)a∈A .
In addition, and without loss of generality, we set the parameter R > 0 to be the users’ reservation utility at each link a.

Thus, given a flow v and a price vector p, the users’ utility is given by:

ua = R − pa − la(va), ∀a ∈ A.

In this environment, firms and users strategically interact in the following way: at every node i �= d the firms owning the
set of links starting in node i set prices in order to maximize profits. Then, considering the price vector generated by firms’
behavior, users choose routes in order to maximize their utility. The solution concept for this game is a sub-game perfect
Nash equilibrium, which we shall refer to the Oligopoly Price Equilibria.

We look for an Oligopoly Price equilibrium using backward induction, i.e., given a price vector p, we solve the users’
problem. Given the optimal solution for users, we solve the firms’ problem.

It is worth noting that the previous framework is deterministic, so the notion of Wardrop equilibria turns out to be
suited for solving the users’ problem. Thus the firms’ maximization profit considers the demand generated by this solution
concept. This way of analysis has been traditional in the context of pricing in congested markets, and examples of its use
are the papers of Acemoglu and Ozdaglar (2007), Engel et al. (2004), Hayrapetyan et al. (2005), Weintraub et al. (2010),
Anselmi et al. (2011).

In this paper we propose an alternative model to study pricing in congested networks. In particular, we consider het-
erogeneous consumers, where one of the main features of our approach is that the users’ optimal solution is based on the
combination of random utility models and dynamic programming. The next section describes in detail these ideas.

2.1. Markovian traffic equilibrium

In this section we introduce our equilibrium concept for the users’ problem, which is based on two important features.
First, to solve the users’ problem we introduce the idea of random utility, which takes into account the heterogeneity of
users’ preferences. Second, we use techniques borrowed from dynamic programming to find in a sequential way the optimal
path for users. We now proceed to explain in detail our approach.

We introduce heterogeneity in the model assuming that users are randomly drawn from a large population having vari-
able perceptions of the utility of each link a. According to this, the random utility ũa may be defined as

ũa = ua + εa, ∀a ∈ A,

with {εa}a∈A being a collection of absolutely continuous random variables with E(εa) = 0 for all a. At least two justifications
for introducing {εa}a∈A can be given. The first explanation comes from the fact that at each link a, the random variable εa

takes into account the variability of users’ reservation utility. This means that at each link a we can model the reservation
utility as a random variable defined as Ra = R + εa , with E(Ra) = R . A similar justification can be given if we model the
congestion costs as random variables. Concretely, for any given flow vector v , at each link a we can consider the random
cost defined as l̃a(va) = la(va) + εa , where E(̃la(va)) = la(va).8 For all i �= d, let Ri denote the set of routes connecting
node i with destination d. Thus, for a route r ∈ Ri , we define its utility as ũr = ∑

a∈r ũa , and therefore the optimal utility
τ̃i = maxr∈Ri ũr as well as the utility z̃a = ũa + τ̃ ja can be rewritten as τ̃i = τi + θi and z̃a = za + εa , where ja denotes that
node j has been reached using the link a, and E(θi) = E(εa) = 0. Each user traveling towards the final node, and reaching
the node i, observes the realization of the variables z̃a and then chooses the link a ∈ A+

i with the highest utility. This
process is repeated in each subsequent node giving rise a recursive discrete choice model, where the expected flow xi entering
node i �= d splits among the arcs a ∈ A+

i according to

va = xiP
(̃
za � z̃b, ∀b ∈ A+

i

)
. (3)

Furthermore, the recursive discrete choice model generates the following conservation flow equations

xi = gi +
∑

a∈A−
i

va. (4)

8 We can also consider the case where the utilities of every link are deterministic and the variability within the population is captured by the distribution
of tastes in regard each link. Both justifications yield the same mathematical structure in terms of expected demand. For a detailed discussion see Anderson
et al. (1992).
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Using a well-known result in discrete choice theory (see Anderson et al., 1992), Eqs. (3)–(4) may be expressed in terms of
the gradient of the function ϕi(·) defined as ϕi(z) ≡ E(maxa∈A+

i
{za + εa}).9 In particular, the conservation flow equations (3)

and (4) may be rewritten as⎧⎪⎪⎪⎨⎪⎪⎪⎩
va = xi

∂ϕi

∂za
(z), ∀a ∈ A+

i ,

xi = gi +
∑

a∈A−
i

va; (5)

where ∂ϕi
∂za

(z) = P(̃za � z̃b,∀b ∈ A+
i ).

Given the recursive structure of the problem, we may write the corresponding Bellman’s equation in the form τ̃i =
maxa∈A+

i
z̃a using z̃a = ũa + τ̃ ja . Thus, taking expectation we get

za = ua + ϕ ja (z) (6)

or in terms of the variables τi

τi = ϕi
(
(ua + τ ja )a∈A

)
. (7)

In order to simplify our analysis, we assume the following two conditions for the random variables {εa}a∈A .

Assumption 1. For all i �= d and for all r ∈Ri , the collection of random variables {εa}a∈r are independent.

Assumption 2. For each node i �= d, the collection of random variables {εa}a∈A+
i

are i.i.d. following a Gumbel (double expo-

nential) distribution with localization parameter 0 < βi < ∞.10

We stress that Assumption 1 rules out the possibility that the εa in the same path may exhibit dependence. In terms
of our model, Assumption 1 implies that realizations of εas do not affect ϕ ja (·). However, Assumption 1 does not impose
independence among different paths.11

Regarding Assumption 2, we note that is made for expositional simplicity, but all our results hold for a general collection
of random variables {εa}a∈A+

i
with the technical requirement that the density of each εa is twice differentiable. In particular,

we can allow for very complex patterns of correlation among the εas at each node i �= d.12 Assumption 2 allows us to write
the functions ϕi(z) in a closed form (see Anderson et al., 1992):

ϕi(z) = 1

βi
log

( ∑
b∈A+

i

eβi zb

)
, ∀i �= d.

Using this log-sum formula, it follows that ∂ϕi
∂za

(z) = eβi za∑
b∈A+

i
eβi zb

, i.e., ∂ϕi
∂za

(z) is the logit-choice rule.

From Eqs. (6) and (7), it follows that for every price vector p, users recursively find the routes with the highest utility
through the solution of a dynamic programming problem. This means that instead of choosing routes, users recursively
choose links considering the utilities and the continuation values at every node. The method of solving recursively the
users’ problem turns out to be completely different from the standard notion of Wardrop equilibrium.13 We shall call this
solution concept Markovian Traffic Equilibrium. Its formal definition is:

Definition 1. Let p � 0 be a given price vector. A vector v ∈ R|A|
+ is a Markovian Traffic Equilibrium (MTE) iff the va ’s satisfy

the flow distribution equation (5), with z solving (6).

Definition 1 formalizes the idea that for a given price vector p, users solve the associated dynamic programming problem
such that the flow vector v is distributed in an optimal way. That is, the flow v is distributed such that users’ utility

9 The functions ϕi(·)s are known as the social surplus in the literature of discrete choice models. In particular, this definition is introduced in McFadden
(1981).
10 The Gumbel (or double exponential) distribution for εa is given by P(εa � x) = exp(−exp(−{βi x + γ })) where γ is Euler’s constant and 0 < βi < ∞.
11 We note that Assumption 1 is weaker than the assumption of independent paths which is widely used in the transportation literature under the label

of stochastic user equilibrium. We refer the reader to Yang and Huang (2005) for an application of stochastic user equilibrium and pricing in the context of
transportation networks.
12 We note that this independence assumption does not rule out the possibility of correlated paths. In fact, under Assumption 2 all the paths sharing

common links are correlated.
13 Recall that a Wardrop equilibrium establishes that utilities (costs) on all the routes actually used are equal, and greater (less) than those which would

be experienced by a single user on any unused route.
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is maximized. The notion of MTE has been introduced in Baillon and Cominetti (2008), and it generalizes the concept of
stochastic user equilibrium considered by Daganzo and Sheffi (1977) and Fisk (1980).14 In this paper we use the concept of
MTE because it allows us to introduce heterogeneity within users through the stochastic terms εas. More importantly, the
notion of MTE allows us to study price competition among firms exploiting the recursive structure in the users’ decisions. In
particular, at every node i �= d, and thanks to the Markovian structure, we can study price competition just considering the
firms owning the links at every node. In other words, we exploit the recursive structure of users’ problem to decompose the
problem of price competition for the whole network into a collection of local oligopoly pricing problems at each node i �= d.
In addition, the Markovian structure makes it possible to study general network topologies in a simple fashion. Example 1
below shows how MTE works for a small network.

Example 1. This example shows how the notion of MTE works. Consider the following network (Fig. 1):

Fig. 1. Finding an MTE.

The set of nodes is N = {i, j,d}, where i and d represent the origin and destination node respectively. The set of links is
represented by A = {a,b, c1, c2}. For each link k the users’ cost is given by pk + lk(vk) with k = a,b, c1, c2, where vk is the
flow of users choosing link k. For a fixed price vector p, MTE requires that users solve a dynamic programming problem.
According to this, at node i the users compare the cost of links a and b taking into account the associated continuation
values. Thus, the users will choose link b if and only if ub + τ jb + εb � ua + εa . Conditional on the choice of link b, the users
reach node j. Then, they must choose between c1 and c2, considering the total costs and the associated continuation values.
Finally, and noting that for this case the associated continuation values to c1 and c2 are zero, the users will choose link c1
if and only if uc1 + εc1 � uc1 + εc2 . The same logic applies to how other paths are chosen. The key point is that the optimal
path is constructed in a recursive fashion.

2.2. Existence and uniqueness of an MTE

Now we are ready to characterize the MTE as the unique solution of a concave optimization program.

Proposition 1. Given any price vector p � 0, the MTE is the unique optimal solution v∗ of

max
v∈V

{∑
a∈A

(R − pa)va −
∑
a∈A

va∫
0

la(s)ds − χ(v)

}
, (P )

where χ(v) = ∑
i �=d

1
βi

[∑a∈A+
i

va ln va − (
∑

a∈A+
i

va ln(
∑

a∈A+
i

va))].

We stress three important points regarding Proposition 1. First, we point out that the result of Proposition 1 is a slight
variation of Theorem 2 in Baillon and Cominetti (2008). We have adapted their result to incorporate the price vector p. Sec-
ond, the result in Proposition 1 is the stochastic version of the classical characterization for Wardrop equilibria introduced by
Beckmann et al. (1956) (see also Ch. 18 in Nisan et al., 2007). In fact, in the deterministic case with ϕi(z) = min{za: a ∈ A+

i }
we get χ(v) ≡ 0, so that the characterization in Proposition 1 coincides with the one given by Beckmann et al. (1956).15

Intuitively, the variational problem in Proposition 1 can be viewed as a perturbed version of the deterministic problem,
where the perturbation is given by χ(v), which takes into account the heterogeneity of users’ utilities.16

14 For a discussion of different equilibrium concepts used in traffic networks see the recent survey by Correa and Stier-Moses (2010).
15 We point out that Beckmann et al. (1956)’s characterization of Wardrop equilibria provide uniqueness of an optimal flow over links, but their decom-

position of the optimal flow over paths is not unique. The result in Proposition 1 establishes the uniqueness of an optimal flow over links and paths.
16 We note that χ(v) = 0 means that βi → ∞ for all i. This follows because under Assumption 2, for all i �= d, a ∈ A+

i we get V(εa) = π
βi

√
6

. Thus the

homogeneous case corresponds to a situation where the random variables εa ’s are degenerate with mean and variance equal to zero. In particular, as long
as βi → ∞ for all i �= d, the MTE coincides with the notion of Wardrop equilibrium.
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Our final remark is that Proposition 1 establishes that an MTE gives us the optimal flow v∗ in terms of an implicit
equation. To see this, we note that at each node i �= d, v∗ can be rewritten as

v∗
a = xi

eβi za∑
b∈A+

i
eβi zb

= xi
eβi(R−pa−la(v∗

a )+τ ja )∑
b∈A+

i
eβi(R−pb−la(v∗

b)+τ jb
)
, ∀a ∈ A+

i . (8)

Expression (8) makes clear the fact that the optimal solution v∗ is in terms of an implicit equation.17

The uniqueness of an MTE allows us to define v∗ as v∗ ≡ D(p), where D(p) = (Da(p))a∈A . We called D(p) the demand
function for the traffic problem. By the Maximum Theorem, D(p) is a continuous function of p. Thus, the following corollary
is straightforward.

Corollary 1. Let D(p) be an MTE. Then the profit function (2) is a continuous function of p. Furthermore, (2) can be written as

πa(p) = pa

(
xi

eβi(R−pa−la(Da(p))+τ ja )∑
b∈A+

i
eβi(R−pb−lb(Db(p))+τ ja )

)
, ∀a ∈ A+

i , i �= d, (9)

where xi satisfies (5).

The previous corollary is important because it illustrates two important features of the profit functions represented by
πa(·). First, it explicitly shows how the congestion levels affects the shape of the profit functions. In fact, we shall see that
this feature plays a central role in establishing the existence and uniqueness of an OE.

The second feature is that a firm setting prices will worry either about its link being excluded from the optimal path,
or, when retained in the optimal path, about the reduction on the overall demand for the path. The prices pa and contin-
uation values τ capture these effects in our model. We shall refer to these effects as the path effect and the demand effect,
respectively.

3. Oligopoly pricing: Existence and uniqueness of a symmetric price equilibrium

In this section we begin the study of a price equilibrium by considering a symmetric model. The general definition of an
oligopoly price equilibrium is the following.

Definition 2. A pair (pOE, D(pOE)) is a pure strategy Oligopoly Price Equilibrium (OE) if for all a ∈ A

pOE
a ∈ arg max

pa∈[0,R]
{
πa

(
Da

(
pa, pOE−a

))}
, ∀pOE−a, (10)

where D(pa, pOE−a) is the MTE for the price vector (pa, pOE−a).

Definition 2 is the standard notion of a sub-game perfect Nash equilibrium applied to the pricing game under study and
it does not impose any restriction on the network topology.

We now specialize Definition 2 to the case of a symmetric model. In particular, in the symmetric model we assume that
the congestion at each link a is captured by the same latency function, namely l(·). We assume βi = β and gi = g for all
i �= d. Furthermore, we assume that any pair of nodes is connected by at least two links, where the number of available
links is denoted by ni for any node i �= d.

Combining Definition 2 with the symmetry in the model, we can define the notion of a symmetric OE as follows.

Definition 3. We say that a pure strategy OE given by (pOE, D(pOE)) is symmetric if and only if for all i �= d

pOE
a = pOE

ni
, ∀a ∈ A+

i ,

with ni = |A+
i |.

Definition 3 just says that at each node i �= d, firms set the same price, which depends on the number of firms on
that node. In fact, Proposition 5 and Corollary 2 in Appendix A show that for a symmetric OE, the prices and profits are
decreasing in the number of firms. These results use that l(·) is a convex function.

Our first result is the existence and uniqueness of a symmetric OE. Formally we get:

Theorem 1. There exists a unique symmetric OE.

17 The derivation of (8) is as follows. Given the flow xi at node i, the probability of choosing link a ∈ A+
i is given by P(ua + ϕ ja (z) + εa >

ub + ϕ jb (z) + εb,∀b ∈ A+
i ). Using Assumption 2 combined with the expression for ua , ub , ϕ·s we get (8).
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The proof of Theorem 1 is based on checking the technical conditions on Assumption 3 in Section 4 below. In particular,
Assumption 3 is a condition on the latency functions which guarantees that the profit functions are concave, so that the
Kakutani fixed point Theorem can be invoked. Interestingly, for the symmetric case such technical conditions are automat-
ically satisfied, and no further assumptions on the class of latency functions are required to guarantee the existence and
uniqueness of a symmetric OE.18

3.1. Welfare analysis and entry decisions

Provided the existence and uniqueness of a symmetric OE, we ask the following question: Under free entry, will the
number of firms be socially optimal? We interpret entry decisions as new links in the network. Considering a fixed set of
nodes, whenever a firm enters the market, the network topology changes. In this environment, a social planner will look for
the optimal number of links connecting the nodes, i.e., he will look for the socially optimal design of the network. Our main
result in this section establishes that under free entry, and given a fixed cost, the number of firms that enter the market
is larger than the socially optimal, i.e., there is excess entry in this setting. The excess entry result is due to a new firm
entering the market reduces the demand and prices of the existing firms in the network. This phenomenon is known as
“The business-stealing effect” (Mankiw and Whinston, 1986). Intuitively, the business-stealing by a marginal entrant drives a
wedge between the entrant’s evaluation of the desirability of his entry and the social planner’s, generating the discrepancy
between nE and nS .

We introduce the presence of a social welfare measure, which is given by the sum of firms’ surplus and users’ surplus.

Definition 4. Let (pOE, D(pOE)) be a pure strategy OE. We define the aggregate welfare as

W
(

pOE, D
(

pOE)) ≡
∑
i �=d

Wi
(

pOE, D
(

pOE)), (11)

where Wi(pOE, D(pOE)) ≡ ∑
a∈A+

i
πa(Da(pOE)) + xiE(maxa∈A+

i
{za + εa}) is the welfare at node i �= d with xi satisfying the

flow constraint (5) and za = ua + τ ja .

In Definition 4, the term
∑

a∈A+
i
πa(Da(pOE)) represents firms’ surplus while xiE(maxa∈A+

i
{za + εa}) represents users’

surplus. Thanks to Assumption 2, formula (11) can be written in a closed form, where

Wi
(

pOE, D
(

pOE)) =
∑

a∈A+
i

πa
(

Da
(

pOE)) + xi

β
log

( ∑
a∈A+

i

eβza

)
, ∀i �= d. (12)

We note that Definition 4 explicitly uses the Markovian structure of the model. In fact, the aggregate welfare is just the
sum of welfare at each node i �= d, which follows from the recursive structure on users’ decisions.

In order to analyze entry decisions, we consider a fixed entry cost, which is denominated as sunk cost and is denoted
by F .19 Thus, given a price vector p and the sunk cost F , the profit functions may be written as:

πa
(

Da(p)
) = pa Da(p) − F , ∀a ∈ A. (13)

Using this simple framework, we are able to answer whether the market will provide the optimal number of firms or not.
In particular, we compare the solution obtained by a social planner with the solution obtained by the market. The social
planner maximizes the social welfare choosing the optimal number of firms. Formally, the planner solves the following
optimization problem:

max
n

{
W

(
pOE

n , D
(

pOE
n

))} = max
n

{∑
i �=d

( ∑
a∈A+

i

πa
(

Da
(

pOE
n

)) + xi

β
log

( ∑
a∈A+

i

eβza

))}
, (14)

where (pOE
n , D(pOE

n )) denotes a symmetric equilibrium. Due to symmetry, denote W(pOE
n , D(pOE

n )) as W(n), so that expres-
sion (14) may be rewritten as:

max
n

{
W(n)

} = max
n

{∑
i �=d

(
xi

β
log(ni) − xil(xi/ni) − ni F

)}
, (15)

where the last expression is obtained due to the symmetry of the problem.

18 Intuitively, Theorem 1 establishes that the demand system induced by the MTE is strictly concave, which implies that the firms’ best response map is
convex. See Section 4 for the details of the derivation of the strict concavity of the firms’ profit functions in the general case.
19 We can interpret the term F as the cost that a firm must pay to participate in the market.
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We note that expression (15) is a strictly concave function in n = (ni)i �=d , so the first order conditions are necessary
and sufficient for finding the socially optimal number of firms nS = (nS

i )i �=d for the whole network. On the other hand, the
equilibrium condition for firms entering at each node i �= d, is given by the zero profit condition:

∀a ∈ A+
i , πa

(
pOE

ni

) = 0. (16)

Thus solving Eqs. (16) we get the equilibrium number of firms nE
i , where for the whole network the number of firms

is given by nE = (nE
i )i �=d . We remark that thanks to the convexity of the latency functions, the system of Eqs. (16) has a

unique solution.
Previous setting allows us to formalize our initial question in the following way: What is the relationship between nE

and nS ?
The following theorem gives an answer to this question.

Theorem 2. In the symmetric congestion pricing game nE > nS .

The proof of Theorem 2 relies on finding nS and nE solving (15) and (16) respectively. Once nE and nS have been found,
we proceed to compare them concluding that nE > nS .

It is worth noting two underlying aspects in Theorem 2. First, as we said before, our result is based in the idea
of the business-stealing effect. In fact, in Appendix A we show that prices and profits are decreasing in the number
of firms (Proposition 5 and Corollary 2 respectively). Thus an entering firm does not internalize such an effect, while
the social planner’s solution considers this externality. Second, the proof of Theorem 2 also relies on the assumption of
convexity of the latency function l(·). If the latency functions are not convex, then the result in Theorem 2 no longer
holds.

Theorem 2 generalizes the results in Anderson et al. (1995) and Mankiw and Whinston (1986) to the case of a congestion
pricing game with a general network topology. Similarly, Theorem 2 generalizes the result in Weintraub et al. (2010) to the
case of a general network.

4. Existence and uniqueness of an OE: The general case

The goal of this section is to establish the existence and uniqueness of an OE for a general class of latency functions. In
our study, we shall restrict attention to an OE such that at any node i �= d, the users’ utilities satisfy20

R − pa − la
(

Da(p)
) + τ ja = R − pb − lb

(
Db(p)

) + τ jb , for all a �= b ∈ A+
i .

This condition makes explicit the fact that any firm a setting prices takes into account the path effect and the demand
effect of its price setting behavior. Moreover, restricting our attention to this class of equilibrium has the advantages of its
simplicity and comparability with previous results in the literature.21

4.1. Existence

In order to study the existence of an OE, we exploit the Markovian structure of the users’ decisions combined with the
assumption that every link is owned by a different firm. In fact, due to the Markovian structure, we can decompose the
pricing problem for the whole network into a collection of pricing problems at each node i �= d. Thus the firms competing
at node i �= d set their prices taking as given the flow of users starting at node i, and the prices set by firms in different
nodes.

Using this structure, we study the problem of existence through the application of Kakutani’s fixed point Theorem. In
order to apply Kakutani’s result, we need to check that the best response map is non-empty, upper semi-continuous, and
convex valued. For the pricing game under analysis, the fact that the best response is not empty and upper semi-continuous
follows a straightforward application of the Maximum Theorem. However, the best response map is not convex valued,
which makes the application of Kakutani’s Theorem problematic. In this paper we provide a specific condition in order
to guarantee the convexity of the best response. The condition depends on the latency functions and it is automatically
satisfied in the symmetric case we analyzed in Section 2.

Formally, given any price vector p � 0, we define firm a’s best response map Bia(p−a) as follows: for all i �= d, a ∈ A+
i ,

Bia(p−a) = arg max
pa∈[0,R]

{
πa

(
Da(pa, p−a)

)}
.

20 Recall that the index ja denotes that node j has been reached using link a.
21 As we said before, most of the existent results on pricing in congested networks make use of the concept of Wardrop equilibrium.
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To study the convexity of B(·), we analyze the concavity of the profit functions πa . Recall that for each firm a the profit
function is given by πa(Da(p)) = pa Da(p). In order to establish the concavity of the πa we note that for all pOE , profit
maximization implies that the following optimality condition must hold

∀a ∈ A
∂πa(Da(pOE))

∂ pa
= Da

(
pOE) + pOE

a
∂ Da(pOE)

∂ pa
= 0. (17)

Using (17), we get

∂2πa(Da(pOE))

∂ p2
a

= 2
∂ Da(pOE)

∂ pa
+ pOE

a
∂2 Da(pOE)

∂ p2
a

. (18)

The profit function is strictly concave if and only if expression (18) is negative. In particular, for the case of uncongested
markets, and under the assumption that the distribution of the εa is double exponential, expression (18) is negative, and
the concavity of the profit function holds. Thus, for the case of uncongested markets, the existence of an OE follows directly.
However, we know from (8) that the presence of congestion effects implies that the demand function is defined in implicit

terms, so when computing ∂2πa(Da(pOE))

∂ p2
a

we must take into account this feature. From (18) it follows that the concavity

depends on ∂ Da(pOE)
∂ pa

and ∂2 Da(pOE)

∂ p2
a

. In Appendix A we show that ∂ Da(pOE)
∂ pa

< 0 and ∂2 Da(pOE)

∂ p2
a

can be written as

∂2 Da(pOE)

∂ p2
a

= − 1

Da(pOE)

[
∂ Da(pOE)

∂ pa

]2[
Kia

(
pOE) − 2

]
,

where Kia(pOE) is the term that takes into account the effect of the latency functions la(·) into the sign (and shape) of
∂2 Da(pOE)

∂ p2
a

. Using the previous expression combined with (17), we can rewrite (18) as22

∂2πa(Da(pOE))

∂ p2
a

= ∂ Da(pOE)

∂ pa
Kia

(
pOE). (19)

Eq. (19) shows that concavity of the profit function relies on understanding the terms Kia(pOE). In particular, the profit
function will be concave if Kia(pOE) > 0.

The derivation of the Kia(pOE)’s is quite involved, and we refer the reader to Appendix A for details. We define the
Kia(pOE) in the following way; for all i �= d, a ∈ A+

i

Kia
(

pOE) = 2 + βi Da(pOE)

J ia

(
Ωia

(
pOE) + (1 − 2Pa)

[
∂ Da(pOE)

∂ pa

]−1)
, (20)

where Pa = eβi za∑
b∈A+

i
eβi zb

, and J ia = 1 + βi Da(pOE)
(
(1 − Pa)l′a(Da(pOE)) + ∑

b �=a
Pbl′b(Db(pOE))

(ni−1)

)
.

The term Ωia(pOE), can be decomposed as

Ωia
(

pOE) = Firm a’s congestion︸ ︷︷ ︸
Ca(pOE)

+ Competitors’ congestion︸ ︷︷ ︸
C−a(pOE)

,

with Ca(pOE) = (1 − 2Pa)l′a(Da(pOE)) + Da(pOE)(1 − Pa)l′′a (Da(pOE)), and C−a(pOE) = ∑
b �=a l′b(Db(pOE))

( (ni−1)Pb−Pa
(ni−1)2

) −∑
b �=a

Da(pOE)Pbl′′b (Db(pOE))

(ni−1)2 .

The component Ca(pOE) shows the effect of firm a’s latency function la , while C−a(pOE) can be viewed as the average
effect of firm a’s competitors’ latency functions lb , with b �= a. Thanks to this decomposition, the term Ωia(pOE) captures
all relevant information to determine the concavity of the profit function.23 First, we note that Ωia(pOE) depends on the l′a
and l′′a . By assumption, we know that the latency functions la are strictly increasing and convex, so it follows that Ca(pOE)

is strictly positive. For the case of C−a(pOE), a more careful analysis must be carried out.
In fact, in Appendix A we analyze how C−a(pOE) determines the sign of Kia(pOE) through its effect on Ωia(pOE). The

main message from that analysis is that for highly congested networks, the sign of Kia(pOE) can be negative, which implies
that the condition of strict concavity of the profit function can be violated.

22 The derivation of (19) is the following. From the first order condition, we know that Da(pOE) = −pOE
a

∂ Da(pOE)
∂ pa

. Using this fact we note that

pOE
a

∂2 Da(pOE)

∂ p2
a

= 2 ∂ Da(pOE)
∂ pa

. Then replacing the last expression into ∂2πa(Da(pOE))

∂ p2
a

the expression follows at once.
23 Throughout the analysis, and without loss of generality, we shall assume that at each node i �= d the equilibrium probabilities satisfy

∑
b �=a Pb � Pa for

all a ∈ A+
i .
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4.2. Uniqueness

Similar to the study of existence, an explicit condition can be derived to analyze the uniqueness of an OE. In particu-
lar, we study the uniqueness based on the dominant diagonal property (see Vives, 2001, Ch. 2), which establishes that the
equilibrium is unique if the following condition holds:

∀i �= d, ∀a,b,∈ A+
i ; −

∑
b �=a

∂2πa(Da(pOE))

∂ pa∂ pb

[
∂2πa(Da(pOE))

∂ p2
a

]−1

< 1.

The previous condition shows that the uniqueness depends on the positivity of ∂2πa(Da(pOE))
∂ pa∂ pb

, which can be written as

∂2π(Da(pOE))

∂ pa∂ pb
= ∂ Da(pOE)

∂ pb
+ pOE

a
∂2 Da(pOE)

∂ pa∂ pb
. (21)

In Appendix A, Lemma 1 shows that ∂ Da(pOE)

∂ pOE
a

> 0, and Lemma 3 shows that ∂2 Da(pOE)
∂ pa∂ pb

can be written as

∂2 Da(pOE)

∂ pa∂ pb
= − 1

Da(pOE)

[
∂ Da(pOE)

∂ pa

∂ Da(pOE)

∂ pb

][
K̄ iab

(
pOE) − 1

]
,

where K̄ iab(pOE) is the term that takes into account the effect of the l′a(·)s and l′′a (·)s in the sign (and shape) of ∂2 Da(pOE)
∂ pa∂ pb

.
Using the previous expression, we rewrite (21) as

∂2πa(pOE)

∂ pa∂ pb
= ∂ Da(pOE)

∂ pb
K̄iab

(
pOE). (22)

Thus expression (22) is positive if K̄ iab(pOE) is strictly positive. For uncongested markets, and under Assumptions 1 and 2,
expression (22) is strictly positive.

Similar to the case of Kia(pOE), the derivation of K̄ iab(pOE) is involved and we refer the reader to Appendix A. These
terms are defined as follows; for all i �= d, a,b ∈ A+

i

K̄ iab
(

pOE) = 1 + βi Da(pOE)

J ia

(
Ωia

(
pOE) −

[
∂ Da(pOE)

∂ pb

]−1[
Pb − Pa

(ni − 1)

])
(23)

with Ωia , Pa , Pb , and J ia defined as before. Furthermore, we note that points (1) and (2) made for the Kia(pOE)’s also apply
to the case of the K̄ iab(pOE)’s.

From the previous analysis, it is clear that the existence and uniqueness of an OE follows if Kia(pOE) > 0 and
K̄ iab(pOE) > 0. Formally

Assumption 3. For any node i �= d, and for all a,b ∈ A+
i , let Kia(pOE) and K̄ iab(pOE) be given by expressions (20) and (23)

respectively. The latency functions are such that: Kia(pOE) > 0 and K̄ iab(pOE) > 0 for all pOE .

We point out that Assumption 3 is not vacuous. The following examples illustrate how Assumption 3 can apply to two
classes of latency functions.

Example 2 (Linear class). Our first example is the class of linear latency functions. This class is given by the functions
la(Da(p)) = δa Da(p), with δa > 0 for all a ∈ A. A straightforward computing shows that for this class of functions Kia(pOE)

is strictly positive. The reason for this is because l′′a (Da(p)) = 0 for all a ∈ A. This implies that the negative term in C−a does
not play any role. Thus for the case of linear latency functions, the profit function is concave in its own price. Furthermore,
it is easy to see that for the linear case K̄ iab > 0. Thus, for the case of linear latency functions, the Assumption 3 is satisfied.

Example 3 (Load balancing class). Let us consider the class of latency functions given by la(Da(p)) = (μa − Da(p))−1 with
μa > Da(p) for all p � 0 and a ∈ A. The parameter μa > 0 represents the capacity of each link a. As we said before,
this class of functions is the leading case in the context of queueing games (see Hassin and Haviv, 2006). This class is
strictly increasing and strictly convex, where l′a(Da(p)) = l2a(Da(p)) and l′′a (Da(p)) = 2l3a(Da(p)). From this latter property, it

follows that l′′a (Da(p)) → ∞ as Da(p) → μa , which implies that C−a(pOE) + (1 − 2Pa)[ ∂ Da(pOE)
∂ pa

]−1 can be arbitrarily large
and negative if some of firm a’s competitors are operating very close to their link capacities. This behavior can make
Kia(pOE) negative, and as a consequence, the concavity of the profit function will fail. The intuition for this observation
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is that for highly congested networks operating close to the capacity of their links, an OE may not exist.24 Using the
converse argument, it can be established that if at each node i �= d the μas are such that the strict inequality

∑
a∈A+

i
μa >∑

a∈A+
i

Da(p) holds, then the conditions of Assumption 3 will apply, and the profit functions will be concave. A similar

reasoning can be applied to analyze the sign of K̄ iab(pOE).

From an applied point of view, we note that the conditions in Assumption 3 provide information for the design of large
scale simulation exercises having a unique OE.

Finally, the main result can be formally written as:

Theorem 3. Suppose that Assumptions 2 and 3 hold. Then, there exists a unique OE.

Three aspects are worth emphasizing with regards to Theorem 3. First, we note that Theorem 3 is a generalization
of the results available in the literature of oligopoly pricing in congested markets. Indeed, practically all environments
considered in the literature satisfy Assumption 3. Furthermore, for the case of networked markets without congestion effects,
Theorem 3 also applies. In fact, Assumption 3 trivially holds. Thus Theorem 3 can also be viewed as an extension of the
results of existence and uniqueness of an OE in the standard oligopoly theory. Second, Theorem 3 establishes the existence
and uniqueness of an OE for a general class of network topologies. Finally, we stress that Theorem 3 considers certain
heterogeneity among the random variables because of the different βi at each node, i.e. the result applies to the case where
at every node the population heterogeneity is different.

In addition to the existence and uniqueness of an OE, we provide an explicit characterization of the equilibrium price
vector pOE .

Proposition 2. Let (pOE, D(pOE)) be a pure strategy OE. Then, for all i �= d, and a ∈ A+
i :

pOE
a = 1

βi(1 − Pa)
+ Da

(
pOE)[(1 − Pa)l

′
a

(
Da

(
pOE)) +

∑
b �=a Pbl′b((Db(pOE))

ni − 1

]
,

where ni = |A+
i |, and Pa = eβi za∑

b∈A+
i

eβi zb
for all a ∈ A+

i .

Proposition 2 establishes that the equilibrium price vector pOE can be expressed as a function of two components. The
first component is due to the fact that pOE depends on the dispersion parameters βi . In particular, at each node i �= d,
the equilibrium prices include the terms 1

βi(1−Pa)
. This contrasts with the expression that we would get if the notion of

Wardrop equilibrium were considered. The reason for this discrepancy is because our approach allows for heterogeneity
within users, whereas Wardrop equilibrium works for a homogeneous population of users. However, as βi → ∞ for all
i �= d, the term 1

βi(1−Pa)
goes to zero, which implies that equilibrium prices resemble the ones obtained when Wardrop

equilibrium is considered as the solution concept.25

The second component is Da(pOE)
[
(1 − Pa)l′a(Da(pOE)) +

∑
b �=a Pbl′b(Db(pOE))

ni−1

]
. From the previous expression, it is easy to

see that Da(pOE)(1 − Pa)l′a(Da(pOE)) is the Pigouvian pricing, which must be charged by firms such that users internalize

the congestion externality. Regarding the term Da(pOE)

∑
b �=a Pbl′b(Db(pOE))

ni−1 , it has the interpretation of an extra markup due to
oligopolistic competition among firms at each node i �= d.

Summarizing, the equilibrium price vector pOE can be viewed as the sum of three factors: Heterogeneity, Pigouvian pricing,
and extra markup.

Finally, we note that Proposition 2 shows that equilibrium prices solve a fixed point equation, where for each firm a the
equilibrium price pOE

a depends on two factors: the prices of its competitors and the continuation values τ ja associated to its
link. These two elements make explicit that a firm setting prices considers the path and demand effects. The previous effects
combined with the heterogeneity in users (through the βi ) turn out to be new elements in the study of price competition
in congested networks.

5. Conclusion and final remarks

In this paper we have studied the problems of free entry and welfare, and the existence and uniqueness of an OE in
congested markets for a quite general class of networks.

24 A similar observation in the context of load balancing games can be found in Anselmi et al. (2011). However, they do not provide conditions to study
the existence of an OE. In particular, expression (20) formalizes their intuition.
25 Recall that at each node i �= d, the variance of the random variable {εa}a∈A+

i
is given by V(εa) = π

βi
√

6
. Then, βi → ∞ implies that the variance goes to

zero, meaning that utility within the population is homogeneous. This latter interpretation allows us to compare our result in Proposition 2 with the prices
that would be obtained using Wardrop equilibria as equilibrium concept for users’ problem.
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In particular, we provided conditions under which an OE exists and is unique in a general class of environments, en-
compassing many setting studied in the literature. These results allow to us to inspect the welfare properties of congested
networks under free entry. To the best of our knowledge, our paper is the first to establish the result of excess entry for
the case of congestion pricing games in a general network. The closest result to ours is the recent paper by Weintraub et
al. (2010), who consider a simple network having a single origin–destination pair with a collection of parallel links. Con-
sequently, we think that our result may provide insights regarding the design of optimal networks subject to congestion
effects.

Finally, the introduction of random utility models to the study of pricing in congested networks opens the possibility of
carrying out two interesting exercises. The first exercise is related to the evaluation of changes in users’ welfare, using the
demand function generated at every node. Concretely, and given the result in Theorem 3, we can evaluate the impact in
users’ welfare of different pricing policies. From an econometric viewpoint, the second exercise is related to the estimation
of a congestion pricing game, mimicking the empirical I.O. literature.
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Appendix A. Proofs

We begin this appendix with the proof of the existence and uniqueness of an MTE.

Proof of Proposition 1. For a given p � 0, let v∗ be an MTE. Since (P ) is a strictly concave program with respect to v , it
suffices to check that v∗ ∈ V is a stationary point of the Lagrangian:

L=
∑
a∈A

(R − pa)va −
∑
a∈A

va∫
0

la(s)ds − χ(v) +
∑
i �=d

μi

[
gi +

∑
a∈A−

i

va −
∑

a∈A+
i

va

]
−

∑
a∈A

λa va.

The multipliers μi ∈ R, and λa � 0 correspond to (1) and va � 0 respectively, and stationary amounts to R − pa − la(v∗
a) = u∗

a ,
and ζ = ∇χ(v) where ζ = μia + u∗

a −μ ja −λa . For the multipliers λa , we simply set λa = 0. To check the last condition take
μi = τi(u∗). Combining the (1) and (5) we get

va = ∂ϕi

∂za
(z)

∑
a∈A+

i

va =
(

eβi za∑
b∈A+

i
eβi zb

) ∑
a∈A+

i

va

which shows that z is a optimal solution for χ(v) and therefore setting ga = ϕia (z)− za we get g = ∇χ(v). Since ϕia (z) = τi
and za = u∗

a + τ ja we deduce that g = ζ = ∇χ(v) as required. �
We note that Proposition 1 can be extended to the case of dependent random variables at each node i �= d. The main

difference in the proof would be that the expression va = ∂ϕi
∂za

(z)
∑

a∈A+
i

va does not have a closed form expression. In

addition, we would need to assume that the density of the random variables εa is twice differentiable.

A.1. Quasi-concavity of the profit function

In this section we derive the conditions for the quasi-concavity of the profit function πa(·) for all a ∈ A. In particular,

we find expressions for
∂2π(pa,pOE−a)

∂ p2
a

and
∂2π(pa,pOE−a)

∂ pa∂ pb
, for a �= b. Our first result is the characterization of

∂ Da(pa,pOE−a)

∂ pa
and

∂ Da(pa,pOE−a)

∂ pb
for b �= a.

Lemma 1. Let (pOE, D(pOE)) be a pure strategy OE. Then, ∀i �= d, a,b ∈ A+
i , with a �= b we get:

∂ Da(pa, pOE−a)

∂ pa
= −βi Da(pa, pOE−a)(1 − Pa)

J ia
, (24)

∂ Da(pa, pOE−a)

∂ pb
= βi Da(pa, pOE−a)Pb

J ia
, (25)
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where

J ia ≡ 1 + βi Da
(

pa, pOE−a

)
(1 − Pa)

[
l′a

(
Da

(
pa, pOE−a

)) +
∑

b �=a qbl′b(Db(pa, pOE−a))

(ni − 1)

]
,

with ni = |A+
i |, Pa = eβi za∑

b∈A+
i

eβi zb
, and qb = Pb

1−Pa
.

Proof. Let us fix a node i �= d. Considering Da(pa, pOE−a) and taking partial derivative with respect to pa we get

∂ Da(pa, pOE−a)

∂ pa
= −βi Da

(
pa, pOE−a

)
(1 − Pa)

[
1 + l′a

(
Da

(
pa, pOE−a

))∂ Da(pa, pOE−a)

∂ pa

]
+ βi Da

(
pa, pOE−a

)∑
b �=a

Pbl′b
(

Db
(

pa, pOE−a

))∂ Db(pa, pOE−a)

∂ pa
.

On the other hand, for the entering flow xi , we know that it must satisfy
∑

b∈A+
i

Db(pa, pOE−a) = xi . Using the fact that pOE

is a pure strategy OE it follows that

∂ Da(pa, pOE−a)

∂ pa
= −βi Da

(
pa, pOE−a

)
(1 − Pa)

[
1 + l′a

(
Da

(
pa, pOE−a

))∂ Da(pa, pOE−a)

∂ pa

]
− βi Da(pa, pOE−a)

ni − 1

∂ Da(pa, pOE−a)

∂ pa

∑
b �=a

Pbl′b
(

Db
(

pa, pOE−a

))
.

Solving for
∂ Da(pa,pOE−a)

∂ pa
we get:

∂ Da(pa, pOE−a)

∂ pa
= −βi Da(pa, pOE−a)(1 − Pa)

1 + βi Da(pa, pOE−a)(1 − Pa)
[
l′a(Da(pa, pOE−a)) + ∑

b �=a
Pb

1−Pa

l′b(Db(pa,pOE−a))

ni−1

] .

Finally, using the definition for qb (with b �= a) and J ia , we find:

∂ Da(pa, pOE−a)

∂ pa
= −βi Da(pa, pOE−a)(1 − Pa)

J ia
.

As the previous analysis holds for any node i �= d, the conclusion follows. For the case of
∂ Da(pa,pOE−a)

∂ pb
, the same logic

yields

∂ Da(pa, pOE−a)

∂ pb
= βi Da(pa, pOE−a)Pb

J ia
, ∀b �= a ∈ A. �

When there is no congestion at the network we get l′a(xa) = 0 for all xa and for all a ∈ A, so that we find ∂ Da(pa,pOE
a )

∂ pa
=

−βi Da(pa, pOE−a)(1 − Pa), and ∂ Da(pa,pOE
a )

∂ pb
= βi Da(pa, pOE−a)Pb for b �= a. Thus, Lemma 1 can be viewed as a generalization of

the demand behavior to the case of oligopoly competition in congested markets.
We now introduce the terms Kia(pOE) and K̄ iab(pOE) as follows: For all i �= d, and a ∈ A+

i , define

Kia
(

pOE) ≡ 2 + βi Da

J ia
Ωia + βi Da

J ia

[
∂ Da

∂ pa

]−1

(1 − 2Pa),

where Ωia = [
(1 − 2Pa)l′a +∑

b �=a l′b(
(ni−1)Pb−Pa

(ni−1)2 )+ Da(1 −Pa)l′′a −∑
b �=a

DaPbl′′b
(ni−1)2

]
, Pa = eβi za∑

b∈A+
i

eβi zb
, J ia ≡ 1 +βi

(
Da(1 −Pa)l′a +∑

b �=a
DaPbl′b
(ni−1)

)
, Da ≡ Da(pOE), l′a ≡ l′a(pOE), and l′′a ≡ l′′a (pOE) for all a ∈ A.

Similarly, we define K̄ iab(pOE) as:

K̄ iab
(

pOE) = 1 + βi Da

J ia
Ωia − βi Da

J ia

[
∂ Da

∂ pb

]−1(
(ni − 1)Pb − Pa

(ni − 1)

)
,

with Ωia , Pa , J ia , Da , l′a , and l′′a defined as before.
As we pointed out in the main text, the terms Kia(pOE) and K iab(pOE) can be viewed as technical conditions on the class

of latency functions.
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The term Kia(pOE) is derived as follows. From Lemma 1 we know that ∂ Da(pa,pOE
a )

∂ pa
satisfies the following equation:

∂ Da(pa, pOE−a)

∂ pa
J ia = −βi Da

(
pa, pOE−a

)
(1 − Pa).

Derivating this expression with respect to pa we find

∂2 Da(pa, pOE−a)

∂ p2
a

J ia + ∂ Da(pa, pOE−a)

∂ pa

∂ J ia

∂ pa
= −βi

∂ Da(pa, pOE−a)

∂ pa
(1 − Pa) − βi Da

(
pa, pOE−a

)∂(1 − Pa)

∂ pa
.

Using implicit differentiation on ∂ J ia
∂ pa

, the previous equation can be written in terms of
∂ Da(pa,pOE−a)

∂ pa
and

∂2 Da(pa,pOE−a)

∂ p2
a

. Thus

solving for
∂2 Da(pa,pOE−a)

∂ p2
a

we can identify Kia(pOE) (see Lemma 2 below). A similar reasoning allows us to identify K̄ iab(pOE)

(see Lemma 3 below).

A.2. Analysis of C−a(pOE)

In this section we discuss the terms C−a(pOE). In particular, we show how the sign of the C−a(pOE) depends on the
latency functions. We consider two cases:

Case 1. C−a(pOE) + (1 − 2Pa)
[

∂ Da(pOE)
∂ pa

]−1 � 0: Noting that Ca(pOE) > 0, it follows that

Ωia
(

pOE) + (1 − 2Pa)

[
∂ Da(pOE)

∂ pa

]−1

> 0.

The previous condition implies that Kia(pOE) > 0, and from (19) we conclude that the profit function is concave.

Case 2. C−a(pOE) + (1 − 2Pa)
[

∂ Da(pOE)
∂ pa

]−1
< 0: Using this condition and noting that

Ωia
(

pOE) + (1 − 2Pa)

[
∂ Da(pOE)

∂ pa

]−1

= Ca
(

pOE) + C−a
(

pOE) + (1 − 2Pa)

[
∂ Da(pOE)

∂ pa

]−1

,

we get the following: If C−a(pOE) + (1 − 2Pa)
[

∂ Da(pOE)
∂ pa

]−1
dominates Ca(pOE), then we obtain Kia(pOE) < 0 and

the concavity of the profit function will fail.26 This implies that the existence of an OE cannot be established.

Conversely, if C−a(pOE)+ (1−2Pa)
[

∂ Da(pOE)
∂ pa

]−1
is dominated by Ca(pOE), it follows that Kia(pOE) is strictly positive,

and by the same argument used in Case 1, we conclude the existence of an OE.

The previous analysis show us that the problem of establishing the concavity of the profit function, occurs when C−a(pOE)

and (1 − 2Pa)
[

∂ Da(pOE)
∂ pa

]−1
dominate the term Ca(pOE). In other words, the complicated case is when the latency functions

are such that the Kia(pOE)s are strictly negative implying that the concavity of the profit functions does not hold.

A.3. Analysis of the existence and uniqueness of an OE

After this discussion we are ready to establish the technical lemmas in order to show the existence and uniqueness of
an OE.

Lemma 2. Suppose that Assumption 3 holds. Then, for all i �= d, a ∈ A+
i

∂2 Da(pOE)

∂ p2
a

= − 1

Da

[
∂ Da(pOE)

∂ pa

]2[
Kia

(
pOE) − 2

]
< 0.

Proof. From Lemma 1 we know that

∂ Da

∂ pa
= −βi Da(1 − Pa)

J ia
,

where Da ≡ Da(pa, pOE−a) for all a ∈ A+
i . Thus, we can rewrite the previous expression as:

∂ Da

∂ pa
J ia = −βi Da(1 − Pa).

26 We employ the term dominate in an absolute value sense.
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Recalling the definition of J ia and taking derivative with respect to pa we get:

∂2 Da

∂ p2
a

J ia + ∂ Da

∂ pa

∂ J ia

∂ pa
= − 1

Da

∂ Da

∂ pa
βi(1 − 2Pa).

Computing the derivative ∂ J ia
∂ pa

, evaluating at pOE , and solving for ∂2 Da

∂ p2
a

, we get

∂2 Da(pOE)

∂ p2
a

= − 1

Da

[
∂ Da(pOE)

∂ pa

]2[
Kia

(
pOE) − 2

]
,

with 0 < Da < xi and thanks to Assumption 3, Kia(pOE) − 2 > 0 for all a. Thus, we conclude that ∂2 Da(pOE)

∂ p2
a

< 0. �
Now we establish a key result to guarantee the existence of an OE. Concretely, we utilize Lemma 2 to show the quasi-

concavity of πa(·, pOE−a).

Proposition 3. Suppose that Assumption 3 holds. Then, for all firm a, πa(pa, pOE−a) is strictly quasi-concave in its own price pa.

Proof. Taking the first order condition we get that an OE satisfies:

∂πa(pOE)

∂ pa
= Da

(
pOE) + pOE

a
∂ Da(pOE)

∂ pa
= 0.

Now, taking the second order condition evaluated at pOE we find that

∂2πa(pOE)

∂ p2
a

= 2
∂ Da(pOE)

∂ pa
+ pOE

a
∂2 Da(pOE)

∂ p2
a

< 0,

where the last inequality follows from Lemmas 1 and 2. Thus, we conclude that for all a ∈ A, the profit function πa(·, pOE−a)

is strictly quasi-concave in its own price pa .27 �
The following proposition establishes the properties of the best response map. In particular, we establish that under

Assumption 3 the best response map is convex valued.

Proposition 4. Suppose that Assumption 3 holds, and let (pOE, D(pOE)) be a pure strategy OE. Then, at each node i �= d the best
response map Bia(pOE−a) is non-empty, upper semi-continuous and convex valued for all a ∈ A+

i .

Proof. Fix a node i �= d. Using Corollary 9 we know that for every firm a ∈ A+
i , the profit function is continuous and

Sa = [0, Ra] is a compact set, then there exists at least one maximizer, which implies that Bia(pOE−a) is non-empty. By
the Maximum Theorem, Bia(pOE−a) is upper semi-continuous. The fact that Bia(pOE−a) is a convex set follows from Proposi-
tion 3. �

To establish the uniqueness of an OE we use the dominant diagonal property (cf. Vives, 2001, Ch. 2). In order to apply
such a property we need to establish two technical results, which are given in Lemmas 3 and 4.

Lemma 3. For all i �= d, a �= b ∈ A+
i :

∂2 Da(pOE)

∂ pa∂ pb
= − 1

Da

[
∂ Da(pOE)

∂ pa

∂ Da(pOE)

∂ pb

]
[K̄ iab − 1] > 0.

Proof. From Lemma 1 we know that

∂ Da

∂ pb
= βi DaPb

J ia
,

where Da ≡ Da(pa, pOE−a) for all a ∈ A+
i . Thus, we can rewrite the previous expression as:

∂ Da

∂ pb
J ia = βi DaPb.

27 We note that this way of proving concavity is standard. For details see Vives (2001, Ch. 2).
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Recalling the definition of J ia and taking derivative with respect to pa we get:

∂2 Da

∂ pa∂ pb
J ia + ∂ Da

∂ pa

∂ J ia

∂ pa
= ∂ Da

∂ pa
βi

[
Pb − Pa

ni − 1

]
.

Computing the derivative ∂ J ia
∂ pa

, evaluating at pOE , and solving for ∂2 Da(pOE)
∂ pa∂ pb

, we get

∂2 Da(pOE)

∂ pa∂ pb
= − 1

Da

[
∂ Da(pOE)

∂ pa

∂ Da(pOE)

∂ pb

][
K̄ ib

(
pOE) − 1

]
,

where 0 < Da < xi and by Assumption 3, K̄ ib(pOE) − 1 > 0 for all b. Thus, we conclude that

∂2 Da(pOE)

∂ pa∂ pb
> 0, ∀a,b ∈ A. �

Lemma 4. For all i �= d, a,b ∈ A+
i with a �= b∑

b �=a

Pb

1 − Pa

K̄iab(pOE)

Kia(pOE)
< 1 ∀pOE.

Proof. Note that for a �= b, Kia(pOE) and K̄ iab(pOE) can be written as:

Kia
(

pOE) = 1 + Da

J ia
Ω ia + Pa

1 − Pa
, K̄ iab

(
pOE) = Da

J ia
Ω ia + Pa

Pb(ni − 1)
,

where Ω̄ia is defined as:

Ω ia ≡ βi

[
(1 − 2Pa)l

′
a +

∑
b �=a

l′b
(

(ni − 1)Pb − Pa

(ni − 1)2

)
+ Da(1 − Pa)l

′′
a −

∑
b �=a

DaPbl′′b
(ni − 1)2

]
.

Using this fact we get:∑
b �=a

Pb

1 − Pa

K̄iab(pOE)

Kia(pOE)
=

∑
b �=a

Da

(1 − Pa)Kia(pOE)
Pb

(
Ω ia

J ia
+ 1

Db(ni − 1)

)
,

= Da

(1 − Pa)Kia(pOE)

(∑
b �=a

Pb
Ω ia

J ia
+ 1

xi

)
,

= Da

(1 − Pa)Kia(pOE)

(
(1 − Pa)

Ω ia

J ia
+ 1

xi

)
,

where the last equality follows because of
∑

b �=a Pb = 1 − Pa . On the other hand, for Kia(pOE) we get:

Kia
(

pOE) = Da

1 − Pa

(
1

Da
+ (1 − Pa)

Ω ia

J ia

)
.

Combining the expressions for Kia(pOE) and K̄ iab(pOE), we find

∑
b �=a

Pb

1 − Pa

K̄iab(pOE)

Kia(pOE)
= (1 − Pa)

Ω ia
J ia

+ 1
xi

(1 − Pa)
Ω ia
J ia

+ 1
Da

.

Using the fact 0 < Da < xi , we conclude that
∑

b �=a
Pb

1−Pa

K̄iab(pOE)

Kia(pOE)
< 1. �

Now we are ready to proof Theorem 3.

Proof of Theorem 3.
Existence: First, thanks to Proposition 4, the correspondence B(pOE) is non-empty, upper semi-continuous and convex

valued. Then, by Kakutani’s fixed point Theorem, it follows that there exists a price vector pOE such that pOE = B(pOE).
Second, we show that for pOE there exists an MTE given by D(pOE), such that the condition (10) is satisfied. In particular,
we show that for any node i �= d and given pOE−a , the firm a ∈ A+

i does not have a profitable deviation. In fact, noting that
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Da(pOE) can be written as Da(pOE) = xi − ∑
b �=a Db(pOE) for all b ∈ A+

i , and thanks to Proposition 1 it follows that the flow

is uniquely determined, which means that firm a does not have incentive to deviate from pOE
a . As this argument is valid at

any node i �= d, we conclude that (pOE, D(pOE)) is an OE.
Uniqueness: As we said before, to establish the uniqueness we apply the dominant diagonal property. Concretely, at

every node i �= d and for a,b ∈ A+
i , we compute the term:

−
∑
b �=a

∂2πa(pOE)

∂ pa∂ pb

(
∂2πa(pOE)

∂ p2
a

)−1

, ∀a,b ∈ A+
i .

Using Lemmas 2 and 3 we get:

∂2πa(pOE)

∂ pa∂ pb
= ∂ Da(pOE)

∂ pb

¯Kiab, for all b �= a ∈ A+
i ,

∂2πa(pOE)

∂ p2
a

= ∂ Da(pOE)

∂ pa
Kia, for all a ∈ A+

i .

Thus, we find that:

−
∑
b �=a

∂2πa(pOE)

∂ pa∂ pb

(
∂2πa(pOE)

∂ p2
a

)−1

=
∑
b �=a

Pb

1 − Pa

K̄iab(pOE)

Kia(pOE)
.

Then, thanks to Lemma 4, it follows that

−
∑
b �=a

∂2πa(pOE)

∂ pa∂ pb

(
∂2πa(pOE)

∂ p2
a

)−1

< 1, ∀a,b ∈ A+
i ,

and we conclude that the equilibrium is unique. �
Proof of Proposition 2. Let pOE−a be an OE for all firms b �= a. Then the best response for firm a is characterized by
∂π(pa,pOE−a)

∂ pa
= 0. Thus, it follows that pOE

a being a best response to pOE−a must satisfy

Da
(

pOE) + pOE
a

∂ Da(pOE)

∂ pa
= 0.

Then, using the expression for ∂ Da(pOE)
∂ pa

given in Lemma 1, we find

pOE
a = 1

βi(1 − Pa)
+ Da

(
pOE)[l′a

(
Da

(
pOE)) +

∑
b �=a qbl′b(Db(pOE))

ni − 1

]
. �

A.4. Symmetric case

Proposition 5. Let (pOE
n , D(pOE

n )) be a symmetric price equilibrium. Then, the following holds

pOE
ni+1 < pOE

ni
, ∀i �= d.

Proof. From a symmetric pure strategy OE condition it follows that

pOE
ni+1 = ni + 1

βni
+ xi

ni
l′
(
xi/(ni + 1)

)
, ∀i �= d,

pOE
ni

= ni

β(ni − 1)
+ xi

ni − 1
l′(xi/ni).

Computing pOE
ni+1 − pOE

ni
we get:

pOE
ni+1 − pOE

ni
= − 1

βni(ni − 1)
+ xi

ni(ni − 1)

[
ni

(
l′
(
xi/(ni + 1)

) − l′(xi/ni)
) − l′

(
xi/(ni + 1)

)]
.

Thus, thanks to the convexity of l(·), the term (l′(xi/(ni + 1)) − l′(xi/ni)) is negative. Combining this fact with l′(·) > 0, it
follows that pOE

ni+1 − pOE
ni

< 0, or equivalently pOE
ni+1 < pOE

ni
. �
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Corollary 2. Let (pOE
n , D(pOE

n )) be a symmetric equilibrium. Then, the following holds

πa
(

Da
(

pOE
n+1

))
< πa

(
Da

(
pOE

n

))
, ∀a ∈ A.

Proof. For all firms a ∈ A consider the symmetric equilibriums pOE
ni+1 and pOE

ni
with the associated profits πa(Da(pOE

n+1)) and

πa(Da(pOE
n )). Computing πa(Da(pOE

n+1)) − πa(Da(pOE
n )) we get:

πa
(

Da
(

pOE
n+1

)) − πa
(

Da
(

pOE
n

)) = xi

ni(ni + 1)

[
ni

(
pOE

ni+1 − pOE
ni

) − pOE
ni

]
< 0,

where the last inequality follows from Proposition 5. Thus we conclude that profits are decreasing in n. �
Proof of Theorem 1.

Existence: Noting that for a symmetric OE we have that for all i �= d, a ∈ A:

Kia
(

pOE
n

) = ni

ni − 1
+ βDa

J ia

(
ni − 2

ni(ni − 1)

)[(
l′(Da)(2ni − 1) + l′′(Da)

)]
> 0,

with Da = xi
ni

. Thus, we find that Assumption 3 is satisfied and the existence of a symmetric OE follows from Theorem 3.
Uniqueness: In order to show the uniqueness, note that for all i �= d, b ∈ A it holds that:

K̄ iab
(

pOE
n

) = 1

ni − 1
+ βDa

J ia

(
ni − 2

ni − 1

)[
l′(Da) + Dal′′(Da)

]
> 0,

with Da = xi
ni

. In particular, we see that Kia(pOE) > K̄ iab(pOE
n ), which implies that Lemma 4 applies, so we conclude that the

symmetric equilibrium is unique. �
Proof. Proof of Theorem 2 First, as we noted the function W(pOE

n ) is strictly concave in n. Thus, taking the first order
conditions and solving for n we get:

∂W(pOE
n )

∂ni
= x

βni
+

[
xi

ni

]2

l′(xi/ni) − F = 0, ∀i �= d.

Thus, the optimal number of firms at each node is given by

∀i �= d
xi

βnS
i

+
[

xi

nS
i

]2

l′
(
xi/nS

i

) = F (S).

Moreover, thanks to the convexity of l(·) the left-hand side in (S) is a decreasing function of ns
i , which implies that there

exists a unique optimal solution nS
i . Now considering the zero profit condition we find that πa(Da(pOE

n )) = 0 yields the
following equation

x

β(nE
i − 1)

+ x2
i

nE
i (nE

i − 1)
l′
(
xi/nE

i

) = F (E).

Once again, the convexity of the left-hand side in (E) implies that nE is uniquely determined. Finally, from (S) and (E)

it follows that nE > nS . �
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